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EAAC Workshop 2015: Edda Gschwendtner — The

AWAKE Facility at CERN

> Use high energy proton beams from
SPS to drive plasma wave

> Convert proton beam energy to

accelerate electron beam in single o P
stage
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> High accelerating gradient
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Caldwell et al., Nature Physics (2009):
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> Existing proton machines # Self-modulation!
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State of the Art — Other Experiments

> BNL: Energy modulations shown | > SLAC: Transverse modulations shown
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FIG. 2 (color online). Energy spectra obtained at various Fig 4. Electron-lithium results: (2), (c) The measured transverse beam profile of the electron beam not passing through plasma. (b, (d) The measured transverse beam
i 5 prafile of the electron beam having passed through plasma. A significant amount of the charge is located at large radii, for many shots up filing the available beam line
plasma densitics. Spectra (a) with n, = 0 (no plasma) and aperture.

> Self-modulation exists, but needs characterization — experiments at PITZ
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Simulated Self-modulation Experiment at PITZ

Longitudinal Phase-space studies
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Status: Experimental results of 2015 run
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Plan for Upgrade

I S

Heating wires overpowered Stronger heater / better heat insulation

Finer mesh — better lithium transport
 Longer side arms

Lithium accumulation in cooling zones

Only 10% laser pulse energy delivered to Better optics (e.g. cylinder lenses;

plasma cell antireflection coating)
* Increase gas tightness of nitrogen
beamline
Electron windows increase achievable Thinner electron window foils
focus size

> Continue plasma experiments in 2016 with improved hardware
(estimated investment costs for upgrade =~ 7500 €)
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Poster:

Sebastian Philipp

Update: Side arms are straight (not funnel shaped) and have same length as beam tube —
now optimized for existing ArF ionization laser (Ti:sapphire not possible any more)

> Stronger heating wires can be fitted into new design

> Heat insulation will be adjusted

Design:
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Test: Replace Wire Mesh with Grooves

old cell
> Mesh did not provide stable lithium transport last

year

> A small heat pipe setup was manufactured to
study the lithium transport in grooves and optimal
parameters of the heat pipe operation

_ nevﬂ?s_rcell

Design:

Gerald Koss
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Lithium Transport Works Well in Groove Pipe

700 °C 1 day at 700 °C 1 week at 700 °C
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Improved Lithium Transport —» Higher Vapor Density
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> Measured lithium gas density: ~10'% cm-3 (target value)
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lonization Laser (ArF Excimer Laser; 193 nm)

Coherent COMPexPro 201*: up to 400 mJ / pulse; 10 Hz
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Better Optics for ArF Laser Beam Line

> Laser output: 24mm x 10mm with 3mrad x 1mrad divergence

= Beam transport over ~12m from laser aperture to plasma cell
= Compensation of divergence done so far with spherical lenses — cutting at apertures
= Now: 4 cylinder lenses (2 per axis) with AR coating for individual compensation

23,0 23,0

Incoherent Fluence
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9,000

Incoherent Fluence
8,118
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8,094
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9,071
8,059
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8,835
0,024
8,012

Y coordinate value
Y coordinate value

Transmission:
0,000 79%

-23,86 %
-23,8 5] 23,8 -23,8@ e 23,0

X coordinate value X coordinate value

Transmission:;

> ZEMAX simulated laser distribution at plasma cell position (before
beam expander) — no atmospheric transmission losses

= With cylinder lenses: rectangular, homogeneous
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Electron Window Foil

> Better candidate foil for experiment was found: 0.9um PET, coated with 37.5nm
aluminum on both S|des (stress testin dummy cell with electron beam soon)

1= FLUKA (multlple scatterlng)

1 —e— Equation (Multiple Coulomb scattering)
1 —a— Experiment in PITZ beam line
1 —v— FLUKA (single scattering)*

*for the last

§ 14 1 point (0.9 um)
= 1 a coated foil is
O 1 simulated
qé) ]
GJ .
T e
5 7 Goal: 0.2 mrad
0.1 E
] _f @From beam :
0.9um for use'in dynamics
new experiments simulations

Foil thickness (um)

> FLUKA (single scattering): FLUKA is forced to calculate each scattering event
one by one instead of averaging, which is default —» good agreement with

experimental results
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Summary

> Further experiments to demonstrate and characterize self-modulation
are in preparation for this summer

> Several significant upgrades have been done compared to last year:

New plasma cell design (better heating, no loss of lithium)

Grooves replacing wire mesh (better lithium transport) — in test cell we already
measured much higher gas density

Better ionization laser beam transport: less clipping, less absorption

Window foil candidate with very low scattering was found (has to pass stress test)
> New experimental results

= Lithium gas density of ~1076 cm3 (target value)
= Negligible gas leakage in test setup of ionization laser beam line

= Electron beam scattering at window foil: 0.1 mrad (2x better than target)

> We are optimistic to be able to see self-modulation this year!
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Poster:
Gregor Loisch

HV PS % —
R H
. ~2-3kV i ! ~ | kAJem?, few us
> Layout of the discharge circuit

> Cell was manufactured

> Electronics and vacuum parts taken
into operation

> Electronics tested until 2 kV, 550 A
(max. 3 kV, 600 A)

> No major problems observed
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> Backup
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Improved Lithium Transport —» Higher Vapor Density

> First white light (halogen lamp) absorption density measurements with
grooved cell indicate much higher lithium density vapor densities

= Target density for experiment: 1076 cm-3

Old:
g 5000} . .
£ oo Lithium
£ absorptio
2000 peak
100055 700 300 700 500 500 700 500 300 To00 100

2 [nm]

Measured Li vapor density: ~10'4 cm-3

intensity [counts]

New (different lamp):

T T T T T T T T T
14000 .
12000 -
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6000
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Measured Li vapor density: ~10'6 cm-3
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Heat pipe regimes

Temperature setpoint vs. power input for different buffer gas pressures
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200 -~
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> 0.8 mbar was selected as an optimal pressure

> Kinks on the plot correspond to an established oven mode:

yA
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Picture of Heat Pipe Test Tube Setup




Plasma Cell with lonization Laser Beam Expander

> Advantage: WeII deflned and adjustable plasma channel length

= Option: Add filter to implement density ramps or other plasma profiles
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Xrms, Yrms

Scattering at Electron Window

> ASTRA simulations: electron beam scattering impedes focusing into the

plasma
Window position Middle of plasma cell
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can be optimized

| SR | 006 Strongly defocused
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z, [m]

56

5.8 6 2 0'02.6 438 ] 5.2 5.4 5.6 5.8 6

> Maximal agreeable scattering angle: 0.2 mrad
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Test: Replace Wire Mesh with Grooves

> Advantage: better suited to complicated geometry in cross-shaped
plasma cell
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New Setup of Optics Box with Cylinder Lenses




Gas Tightness of Beam Tube

> Problem: 193nm light is strongly absorbed by oxygen

> Solution: piped laser beam line with nitrogen atmosphere

> Main problem: mirror

Spiegelhalter Verbind ﬂ
holders mit Dichfting \
Eingang _ \
> Biggest leaks at p J Messgert —

= Mirror edges

Sauerstoffmessgerit

= Connector between mirror
holder and tube (especially

problem under mechanical
stress) "\__ﬂ

> Solutions:
= Seal rings for mirrors
e Ausgangsanschluss
= Bellows for connectors Messgeriit
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Overview of H ighTransformerRatio

PIasmaWakeFieIdAcceIeration @ P ITZ
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> Flexible, photocathode-shaped
bunches offer many oportunities for
high transformer ratio experiments

It: 25301, fwhm: 11.1667

- . ~ 14 ps
> Preliminary studies conducted IR = I il = [
> So far ramped bunches look more ot M WA W —
. . M nﬂr’uﬂManAﬁw\aMm Nl v il ol j
promising e
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