Electron windows studies for Self-Modulation Experiments at PITZ

O. Lishilin¹, R. Brinkmann², J. Engel¹, M. Gross¹, F. Grüner^{3,4}, G. Koss¹, G. Loisch¹, G. Pathak¹, S. Philipp¹, Y. Renier¹, D. Richter⁵, C. Schroeder⁶, R. Schütze¹, F. Stephan¹

¹Deutsches Elektronen-Synchrotron, DESY, Zeuthen, Germany
²Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany
³Universität Hamburg, UHH, Hamburg, Germany
⁴Center for Free-Electron Laser Science, CFEL, Hamburg, Germany
⁵Helmholtz Zentrum Berlin, HZB, Berlin, Germany
⁶Lawrence Berkeley National Laboratory, LBNL, Berkeley, USA

Osip Lishilin

DPG Spring Meeting, Darmstadt 2016-03-17

Simulated Self-modulation Experiment

Plasma cell design

Osip Lishilin | Electron windows studies for Self-Modulation Experiments at PITZ | 2016-03-17 | Page 3

Maximal agreeable scattering angle: 0.2 mrad

Multiple scattering

- a particle undergoes a number of scatterings per each step, resulting a small deviation from initial trajectory
- Valid only if number of elementary scatterings per step is large enough

Single scattering

- based on the Rutherford formula
- Every interaction is a separate step ->demands much more CPU time compared to multiple scattering

"FLUKA: a multi-particle transport code" A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773

Experiments at PITZ beamline

- 2014.02.07N Kapton 50 µm + (?) Gold 5 nm
- 2014.05.15A Mylar 6 µm + Gold coating of unknown thickness
- 2015.03.07M Mylar 2 μm
- 2015.10.22M PET (Mylar) 0.9 μm + 37.5 nm Al coating both sides

FLUKA: multiple scattering

FLUKA: forced single scattering

Scattering on aluminium

Osip Lishilin | Electron windows studies for Self-Modulation Experiments at PITZ | 2016-03-17 | Page 8

Polymer foils: scattering

Polymer films and coating materials: scattering

2016-03-17 | Page 11

*for the last point (0.9 μ m) the coated foil is simulated

Experimental data by D. Richter

foil	$K/(m^2 s^{-1})$	gas	\dot{Q} into PITZ/(mbar l/s)
M, $2 \mu m$	$9.88 \cdot 10^{-9}$	He	$3\cdot 10^{-5}$
M, 6 μm , gold coated	$5.77 \cdot 10^{-9}$	He	$5 \cdot 10^{-6}$
K, $25 \mu m$	$1.97\cdot10^{-13}$	He	$4 \cdot 10^{-11}$
K, 8 μm	$9.85\cdot10^{-15}$	Ar	$4 \cdot 10^{-12}$
P, 0.9 μm , aluminum coated 2 × 37.5 nm	$2.58\cdot10^{-14}$	Ar	$1 \cdot 10^{-10}$

Maximum acceptable gas load is 1.10⁻⁶ mbar l s⁻¹

Double sided coating decreases gas permeation without introducing too much scattering

Summary

- > 0.9 µm PET + 2x37.5 nm AI is a primary candidate for the electron windows for the plasma cell and the gas discharge cell
- If this foil fails the dummy plasma cell tests, PEN foil is the next option
- Summer 2016: plasma experiments with improved hardware

Problems	Solutions
Heating wires overpowered	Stronger heater / better heat insulation
Lithium accumulation in cooling zones	 Axial grooves or finer mesh→ better lithium transport Longer side arms
Insufficient density of lithium vapor	 Stronger heater / better heat insulation Fine adjustment of buffer gas pressure
Only 10% laser pulse energy delivered to plasma cell	 Better optics (e.g. cylinder lenses; antireflection coating) Better beamline sealing

New plasma cell

A test heat pipe with channels instead of the metal mesh is in preparation

The new plasma cell design with flat arms is being finalized

Beam parameters for simulation

Theory: Multiple Coulomb Scattering

From: Claus Grupen "Teilchendetektoren": Multiple Coulomb Scattering

The rms of the projected scattering angle distribution:

$$\theta_{rms} = \frac{13.6MeV}{\beta pc} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right]$$

$$\beta pc = 22MeV; \ z = 1; \ X_0 = 0.28m$$

- Important: Radiation length X₀
 - Gold: 0.3 cm
 - Aluminium: 8.9 cm
 - Kapton (Polyimide): 28.6 cm
 - Mylar (PET): 28.5 cm
 - Teonex (PEN): 29.5 cm
 - Beryllium: 35.3 cm
 - Polyethylene: 50.3 cm

Lishilin | Electron windows studies for Self-Modulation Experiments at PITZ | 2016-03-17 | Page 17

