Status of PITZ.

M. Krasilnikov for the PITZ team

Content:	parameter	XFEL injector, nominal	XFEL injector, startup
 Current PITZ RF-Gun Setup and conditioning results RF-Gun stability measurements Emittance results New developments: TDS 3D Elli Plasma cell THz studies Summary 	RF gun gradient (peak power)	E _{cath} =60MV/m (6.4MW)	E _{cath} =5053MV/m (4.55.0MW)
	RF pulse length	650us	650us
	Repetition rate	10Hz	10Hz
	RF gun phase stability (rms)	0.01deg	
	RF gun amplitude stability (rms)	0.01%	
	Cathode laser (FWHM)	Flattop (2/20\2ps)	Gaussian (~13ps FWHM)
	Beam emittance (bunch charge)	< 0.9 mm mrad (1nC)	≤1 mm mrad (500pC)

E

HELMHOLTZ

ASSOCIATION

Current PITZ RF-Gun Setup and Dedicated Tasks

> Highest priority at PITZ currently:

Participate in the solution of the remaining problems of the RF gun for XFEL (RF windows, RF cathode contact spring, stability and long term reliability)

2 x Thales RF window solution at PITZ works!

BUT the gun-4.2 (due to its history) can not support full specifications (1 week w/o IL at 6MW, 600us, 10Hz)

Gun RF Stability

The gun water cooling system (WCS)

Mikhail Krasilnikov | Status of PITZ | 3rd ARD ST3 Workshop | 15-17.07. 2015 | Page 4

Gun RF stability at 4.5MW, 650us flat-top RF, 800 subsequent shots + Beam-based jitter measurements

More details → Speed poster: M. Krasilnikov "Improved beam-based method for RF photo gun stability measurements",

session «Stability, Controls & Synchronization»

Emittance

Emittance measurements in 2015: Gun at 53 MV/m, Cathode laser → temporal Gaussian

Requirement for XFEL injector commissioning: 1 mm mrad at 500pC → fulfilled !

High Brightness Photo Injector for XFEL

parameter	XFEL injector, nominal	XFEL injector, startup	PITZ, 2015	Remark		
RF gun gradient (peak power)	E _{cath} =60MV/m (6.4MW)	E _{cath} =50…53MV/m (4.5…5.0MW)	E _{cath} =53MV/m (5MW)			
RF pulse length	650us	650us	650us	Priority w.r.t. the peak power		
Repetition rate	10Hz	10Hz	10Hz			
RF gun phase stability (rms)	0.01deg		0.07deg			
RF gun amplitude stability (rms)	0.01%		0.02%			
Cathode laser (FWHM)	Flattop (2/20\2ps)	Gaussian (~13ps FWHM)	Gaussian (~11-12ps FWHM)	Pulse shaper issue		
Beam emittance (bunch charge)	< 0.9 mm mrad (1nC)	≤1 mm mrad (500pC)	0.8 mm mrad (500pC)	E _{cath} =53MV/m, Gaussian laser pulse		
Required electron beam quality demonstrated at PITZ in 2011 with ≤200us RF pulse length						

TDS

Transverse Deflecting System (TDS) status

> Prototype for the XFEL injector

Designed & manufactured by INR, Troitsk, Russia

>Travelling wave structure (based on LOLA)

- >Design parameters:
 - 1.7 MV over 0.533 m
 - 14+2 cells (2π/3)
 - = 2997.2 MHz
 - Q = 11780

>Expected power balance:

■Q~88% at 45°C, 44 m WG losses...

- 2.1 MW @structure
- 2.7 MW @klystron

>TDS commissioning started on 02.07.2015!

Structure conditioned up to ~500 kW (~25% of design value).

•First measurements taken:

- Calibration of couplers vs. e-beam deflection
- Temperature dependencies
- Bunch length vs. charge and booster phase
- TDS+HEDA2= single-shot images of longitudinal phase space

3D Elli

New photocathode laser system for 3D ellipsoidal pulses

Installation finalized 12/2014

- Commissioning begun 2015
- First photoelectrons 03/2015
- > Beamline finalized 04/15

More details → Speed poster:

T. Rublack "New photocathode laser system for 3D quasi-ellipsoidal pulses - first produced photoelectrons",

session 2 «Beam Dynamics & Photon Sources»

Cross-correlation measurement of pulse

PDPWA

Self-modulation Experiment with long Electron Beams

Measurement of longitudinal temperature profile

Simulation of experiment: Expected phase space

PITZ plasma cell:

- · designed and fabricated
- commissioning mainly done (next step: Lithium vaporization, ionization)
- · leaky plasma cell is being repaired
- PITZ beamline was remodeled
- Ionization laser is set up
- Several preparatory experiments performed:
 - <100μm focusing into plasma cell
 - 8µm Kapton foil → for first experiments, 3µm → goal for the window thickness (from BD simulations and first experiments)
- ➤ Installation into PITZ beamline → this week

Studies on THz option at PITZ

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Mikhail Krasilnikov | Status of PITZ | 3rd ARD ST3 Workshop | 15-17.07. 2015 | Page 16

- > 2 x Thales RF window solution at PITZ works!
- Sum RF stability at PITZ is comparable to FLASH results -> improvements still required to reach the XFEL specs (phase jitter x 5; amplitude jitter x 2)
- Emittance requirements for XFEL injector commissioning were demonstrated experimentally.
- > New developments at PITZ:
 - **TDS**: commissioning is ongoing, first measurements done
 - **3D ellipsoidal laser**: first photoelectron produced
 - Plasma acceleration experiment: Self-modulation experiments are in preparation
 - Simulations of the IR/THz options at PITZ (High-gain FEL and CTR) \rightarrow case studies

