Motivation of emission studies at PITZ

PITZ activities to understand the discrepancies between measurements and simulations in:

- Transverse phase space
- Optimum machine parameters
- Auxiliary measurements

Ideas \rightarrow how to explain the discrepancies:

- Errors in measurements
- Extracted charge → emission modeling
- Imperfections (e.g. cathode laser halo)
- Sources of e-beam X-Y asymmetry/coupling (coaxial coupler, VM, solenoid...)

M. Krasilnikov DESY-TEMF Meeting Hamburg, 15 June 2015

Emittance measurements in 2015 (vs. 2011): Gun at 53 MV/m, Cathode laser → temporal Gaussian

Requirement for XFEL injector commissioning: 1 mm mrad at 500pC -> fulfilled !

M. Krasilnikov | DESY-TUD Meeting | 15/06/2015 | Page 2

2015: Measured Phase Spaces

*Emittance measurements for 100 pC bunch charge are not completed: to be continued

Phase space BSA = 0.9 mm, 100 pC, at EMSY1

Phase space BSA = 1.6 mm, 1 nC, at EMSY1

Measurements vs. Simulations

	2011	2015		
Gun gradient, Ecath	60.6MV/m	53MV/m		
Cathode laser, temporal	Flattop (2/21.5\2ps)	Gaussian (11-12ps fwhm)		
CDS booster		Z-position \rightarrow -0.4m		
Optimum phase space	 Even signs of <xpx>, <ypy> are opposite for high charge</ypy></xpx> Rather good agreement for low charges (≤100pC) Larger charges (≥500pC) → larger discrepancies Strong X-Y asymmetry/coupling, tails in e-beam transverse distributions Strong dependence on e-beam trajectory 			
Optimum machine parameters				
 Laser rms spot size 	 Simulated > Measured (e.g. for 0.25nC →+26%; 1nC →+35%; 2nC→59%) 	 Implemented core+halo in transverse laser distribution reduces the discrepancy 		
 Main solenoid current 	 Imain: Simulated-Measured →-46A 			
RF gun phase	 Simulated → ~MMMG Experiment → MMMG+6deg 	 Simulated ≈ Measured → ~MMMG 		
Auxiliary measurements: •Bunch charge vs. gun phase •Bunch charge vs. laser pulse energy	Underestimated extracted bunch charge in ASTRA simulations:Gun phase scansLT scans	Implemented core+halo in transverse laser distribution → better coincidence between ASTRA simulations and experimental data (studies of Carlos Hernandez-Garcia), BUT still large discrepancies in phase space for 1nC		

How to explain the discrepancies

> ?Measurement errors:

- Bunch charge: → cross-check using LOW.FC1,2, LOW.ICT1, HIGH.ICT1 → OK
- Laser spot size at VC2
- Electron beam/beamlet size at YAG screens → checked several times (grid based calibration)
- Gradient in the gun and CDS booster → cross-checked with beam momentum scans
- Emittance measurements using single slit scan → methodical studies were performed (e.g. transverse halo cut, etc.)
- Cathode laser pulse length (streak camera, OSS)

- Impact onto amount of extracted particles
- Impact onto beam dynamics ("initial" kick onto transverse and longitudinal phase spaces: correlation and intrinsic emittance?)
- Laser imperfections → core+halo
- Additional motivation: 3D quasi-ellipsoidal laser pulses for the production of (ellipsoidal) electron bunches with extremely low emittance

> Origin of X-Y asymmetry/coupling:

- ?RF-gun coaxial coupler kick (e-beam is large there + solenoid center)
- ??Vacuum mirror
- ???Other imperfections: wake field-like (image charge) effects of the beam line, solenoid, magnetic components

Cross-check of the VC2 (Virtual Cathode 2) measurements on 12.03.2013

DDC with VC2 camera at laser trolley Laser beam a little bit bigger vacuum mirror on photocathode ($\leq 2\%$) Virtual cathode VC2 $\sigma_{xy,PC}/\sigma_{xy,VC2}$ 110% 108% 06% 104% 102% 100% 98% 96% 94% 92% -BSA/VC2 xyRMS

Quality (intensity) similar, the difference \rightarrow due to different number of mirrors and view ports in the path:

- PC: viewport-VM-viewport
- VC2: 4x mirrors

Cathode camera at gun location (CCD=Cs₂Te cathode location at the gun back plane)

2.5

3.5

Direct imaging onto CCD chip (pixel size 4.65um)

1.5

BSA diameter (mm)

0

0.5

2011: Reasons of discrepancy for high Q → Emission from the cathode

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

bunch charge@LOW.ICT1, nC

Measured and simulated laser energy scan (1nC)

measured charge (XYrms=0.3mm, 0deg)

simulated charge (XYrms=0.3mm, 0deg)

• Laser intensity (LT) scan at the MMMG phase (red curve with markers) shows higher saturation level, whereas the simulated charge even goes slightly down while the laser intensity (Qbunch) increases

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

~ laser intensity, nC

• Direct plug-un machine settings into ASTRA does not produce 1nC at the gun operation phase (+6deg), whereas 1nC and even higher charge (~1.2nC) are experimentally detected

• Simulated (ASTRA) phase scans w/o Schottky effects (solid thick lines) have different shapes than the experimentally measured (thin lines with markers)

Possible reasons:

- Field enhancement of the photo emission should be taken into account
- Laser imperfections (transverse halo and temporal tails) could contribute at high charge densities

2015: Core+halo modeling applied to new measurements using cathode laser pulses with Gaussian temporal profile

C. Hernandez-Garcia

Measurements vs. Simulations at PITZ: Summary

- PITZ benchmark for theoretical understanding of the photo injector physics (beam dynamics simulations vs. measurements)
- > BD simulations \rightarrow to establish experimental optimization procedure
- Rather good agreement on emittance values between measurements and simulations
- > Optimum machine parameters: simulations ≠ experiment
 - Laser spot size → less in 2015 by applying core+halo model
 - Main solenoid current
 - RF-Gun launch phase → more consistent in 2015 for Gaussian laser pulses

Simulated and measured phase space:

- Rather good agreement for <0.1 nC</p>
- Large deviation for higher charges >500pC
- Correlations have different signs for higher charges
- > Photoemission studies (Talk of C. Hernandez-Garcia for more details):
 - New experimental benchmark (measurements for various RF and SC fields)
 - Implementation of the core+halo model → better understanding of the emission curves, BUT still transverse phase spaces for higher bunch charges are not explained
- X-Y asymmetry/coupling under study
- > Outlook:
 - TDS for LPS (bunch length) measurements
 - More precise charge measurements (less jitter, LOW.FC2 up to now → best s2n)
 - Coaxial coupler kick measurements (repeat)?

BACKUP SLIDES

M. Krasilnikov | DESY-TUD Meeting | 15/06/2015 | Page 12

Emittance vs. Laser Spot size for various charges

Minimum emittance

Charge, nC	Meas., mm mrad	Simul., mm mrad
2	1.25	1.14
1	0.70	0.61
0.25	0.33	0.26
0.1	0.21	0.17
0.02	0.12	0.06

- Optimum machine parameters (laser spot size, gun phase): experiment ≠ simulations
- Difference in the optimum laser spot size is bigger for higher charges (~good agreement for 100pC)
- A radial homogeneous laser pulse distribution is used in simulations whereas the experimental transverse distribution is not perfect
- Artificial increase of the thermal kinetic energy at the cathode (from 0.55eV to 4eV) did not improve the understanding

Measured Phase Spaces for various bunch charges

Qbunch	Beam at E	eam at EMSY1 Horizontal phase spac		ase space	Vertical phase space		φ _{gun}	
Las.XYrms	XY-Image	σ_x/σ_y		ε _x		ε _y		
2 nC	Terreter 2 2 20 West y 2 222 72 RMS x 0.322 72 72 72 72 72 72 72 72 72	0.323mm 0.347mm	$\begin{array}{c} \hline & \hline \\ \hline \\$	1.209 mm mrad	22	1.296 mm	+6deg	
0.38 mm			S 14 00 00 00 00 00 00 00 00 00 00 00 00 00			mau		
1 nC	Mara y 1556 PID5 x 0.399 RM5 y 0.229 a RM5 y 0.230 a RM5 y 0.566 a RM5 y 0.576 a RM5 y 0.576 a R R R R R R R R R R R R R R R R R R	0.399mm 0.328mm	SII and X: 6 public 2 395.6 (A), Q = 1.009 ; 0.015, InC ; SII and X: 6 public 2 3 and 15 and	0.766 mm mrad	Lune 395.6, [A], Q = 1.093 ±0.009, [nC] Sit t _{min} ² Y; 8 pulses; S _{m.MO} / S _{AB} = 0 10, 10 10 10 10 10 10 10 10 10 10	0.653 mm mrad	+6deg	
0.30 mm	45 -25 3 25 4 45 5 0 26 10 100 100 100 100 100 100 100 100 100		20 1 1 1 2 1 2 5 1 2 5 1 2 5 1 2 5 0 2 0 1 2 5 0 2 0 1 2 5 0 2 0 1 2 5 0 1 2 5 1 2 1 2		18- 19- 10- 10- 10- 10- 10- 10- 10- 10			
0.25 nC		0.201mm 0.129mm	$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	0.350 mm mrad	Luan = 392.6, [A], Q = 0.274 ± 0.006, [nC] 3 Silt sar Y; 9 pulses; S _{nico} / S _{nic} = 1.1.08 3/0 2	0.291 mm mrad	0deg	
0.18 mm	45 30 30 30 30 30 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		22 05 15 15 15 15 15 15 15 15 15 1		22- 23- 29			
0.1 nC	Have and Charles	0.197mm 0.090mm	Lube 3393.6, [A]. Q = 0.126 ± 0.004, [nC]] 2 Slift _{aux} X; 14 pulses; S _{0.000} / S _{AU} = 1.27L -17 10 10 10 10 10 10 10 10 10 10	0.282 mm mrad	Sift 20 20 20 20 20 20 20 20 20 20	0.157 mm mrad	0deg	
0.12 mm	45 45 45 45 45 45 45 45 45 45		20 20 20 20 20 20 20 20 20 20 20 20 20 2		22- - - 2 0			ned
0.02 nC	Line Line <thlin< th=""> <thline< th=""> Line <thlin< th=""><th>0.066mm 0.083mm</th><th>Vietness 242 million 242 million 242 million Lans 387.6, [A], Q = 0.000 20.000, [InC] 250.000, [InC] Stift same X; 21 pulses; S and X; [A], Q = 0.000 20.000, [InC] 2000 Intermediate 37.6, [A], Q = 0.000 20.000, [InC] 2000 Stift same X; 21 pulses; S and X; [A], Q = 0.000 20.000 2000 Intermediate 37.000 37.000 37.000 Intermediate 37.000 37.000 37.000</th><th>0.111 mm mrad</th><th>$\begin{bmatrix} U_{MM} = 387.6, [A], Q = 0.000 \pm 0.000, [n] \end{bmatrix}$</th><th>0.129 mm mrad</th><th>0deg</th><th>zoor</th></thlin<></thline<></thlin<>	0.066mm 0.083mm	Vietness 242 million 242 million 242 million Lans 387.6, [A], Q = 0.000 20.000, [InC] 250.000, [InC] Stift same X; 21 pulses; S and X; [A], Q = 0.000 20.000, [InC] 2000 Intermediate 37.6, [A], Q = 0.000 20.000, [InC] 2000 Stift same X; 21 pulses; S and X; [A], Q = 0.000 20.000 2000 Intermediate 37.000 37.000 37.000	0.111 mm mrad	$\begin{bmatrix} U_{MM} = 387.6, [A], Q = 0.000 \pm 0.000, [n] \end{bmatrix}$	0.129 mm mrad	0deg	zoor
0.08 mm	4 4 2 2 2 3 2 3 3 3 4 5 5 0 10 10 10 10 10 10 10 10 10		12- 100 12- 100 100 100 100 100 100 100 10		2- 			

Using core+halo input distributions in ASTRA renders closer agreement with emittance measurements than just using <u>uniform core input distributions*</u>

0.1 nC bunch charge

1 nC bunch charge

*ASTRA simulations by Q. Zhao (PITZ)

Simulation request for PITZ

Observation / problem / idea	? to be simulated
Core emittance	"Phase space collimator (beam scraper)" ?influence of image charges + wakes
Measured e-beam shape (asymmetry, tails), transverse phase space (emittance) depend on trajectory	 Magnetic components (active, passive), e.g. solenoid imperfections? Wake field (like) effects (VM, DDC,)
Charge production, influence of real laser transverse and temporal profiles (imperfections)	Beam dynamics simulations, especially in the cathode vicinity (emission), slice emittance formation
E-beam matching into the tomography section	Using V-code with space charge to find quad strength
Particle driven plasma wake field acceleration	Self modulation of the driver, etc

