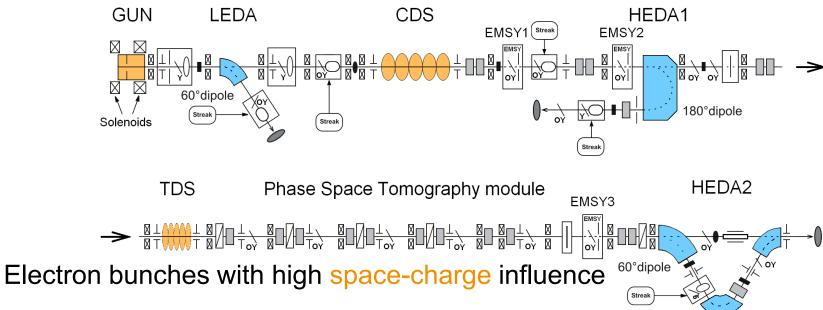
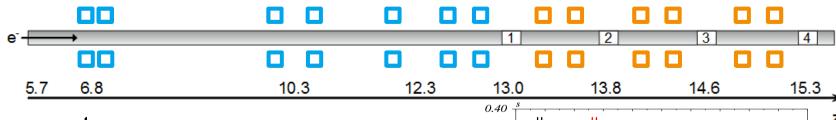
Space-charge matching of the transverse phase space at PITZ.

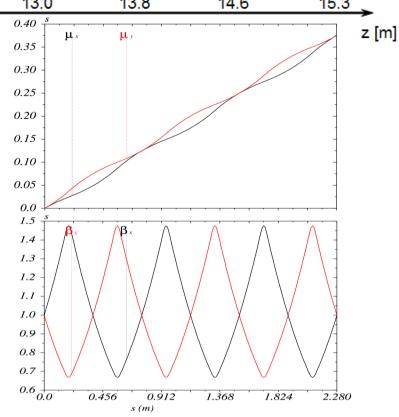
- > Requirements of transverse beam matching at PITZ
- > Transverse phase space tomography at PITZ
- > Space-charge matching of periodic and dense lattices
- > Space-charge matching of aperiodic and long lattices
- > Summary and outlook


Georgios Kourkafas DPG 2015, Wuppertal 10.03.2015

Requirements of transverse beam matching at PITZ



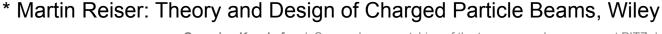
- 20 ps flat-top laser pulses
- 20 pC 1 nC charge
- up to 25 MeV/c momentum
- Various diagnostics and experiments require specific beam parameters at certain parts of the beamline → beam matching (e.g. PST)
- > PITZ is a test facility with constantly changing machine parameters → fast matching results are needed



Transverse Phase Space Tomography (PST) at PITZ

Tomographic reconstruction of the beam's phase space using 4 projections

- Components:
 - PST lattice (FODO) for the data acquisition
 → periodic and dense quadrupole focusing
 - Matching lattice for the necessary beam parameters in front of the PST lattice
 → aperiodic and sparse focusing
- Matching requirements:
 - equidistant phase advance values (45°)
 each PST screen
 - 2. Twiss parameters @ 1st screen \rightarrow $\beta_{x,y} = 1 \text{ m}, \ \alpha_{x,y} = \pm 1$



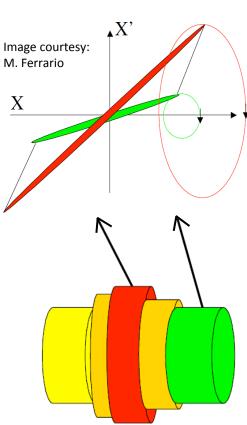
Space-charge matching of periodic and dense lattices (I)

- ➤ Under the conditions of : ✓ periodic focusing
 - √ (fairly) constant emittance
 - the smooth-approximation theory* can be used to correlate the beam dynamics without and with space charge (linear component)
- > Enables codes with no space-charge consideration (MAD) to perform space-charge matching by a proper scaling of the used beam parameters
- 1. Requirements: space-charge density (emittance and generalized perveance)
- 2. The desired matching constrains (45°) are scaled accordingly (e.g. 55°)
- 3. A traditional MAD matching is performed using the scaled parameters
- 4. Reverse-scaling of the MAD results to obtain the actual corresponding values

Space-charge matching of periodic and dense lattices (II)

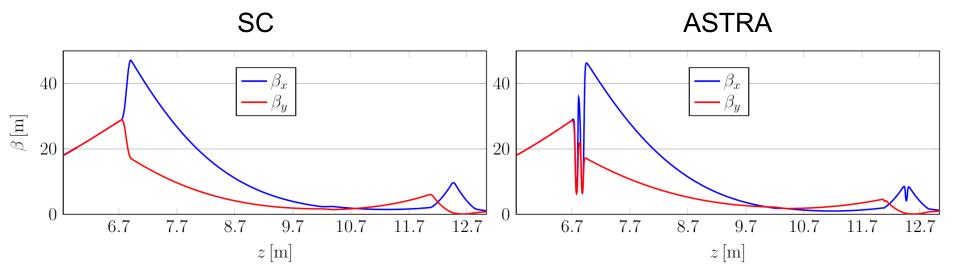
Matching result of a beam with 1 nC, 22 ps, 25 MeV/c, 1 mm·mrad evaluated with ASTRA

	Phase-advance mismatch @ 1st screen 2nd screen 3rd screen		
X plane			
Traditional MAD matching	-3.1°	-16.9°	-34.5°
MAD with space charge compensation	-0.9°	-0.9°	-1.2°
Y plane			
Traditional MAD matching	-4.7°	-20.2°	-37.8°
MAD with space charge compensation	-1.9°	-4.5°	-3.6°


- > The phase-advance mismatch is reduced from 38° to 5° with the space-charge compensation (significant improvement for tomography)
- Method yields almost instant results

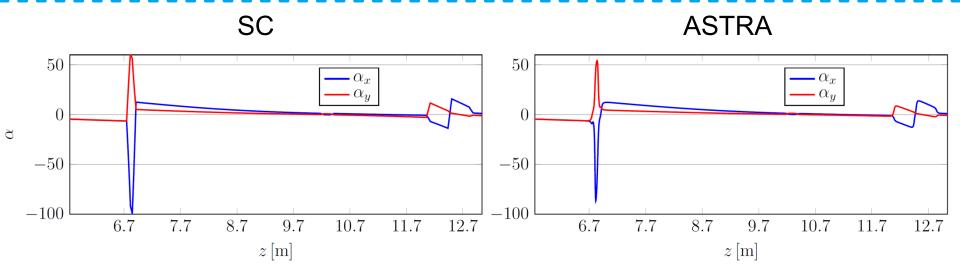
Space-charge matching of aperiodic and long lattices (I)

- The conditions of periodicity and constant emittance are no longer valid
- > Except from its defocusing effect, space charge also induces correlated emittance growth
- Different slices of the beam obtain different transverse parameters, overlapping in the phase space
- In order to achieve the target values all along the bunch, the matching procedure has to suppress the emittance oscillations
- > Solution comes from the SC software (HZB): linear space-charge fields (quick implementation) for each longitudinal slice of the bunch


...more details on SC: Thursday, Andreas Ginter, AKBP 15.8

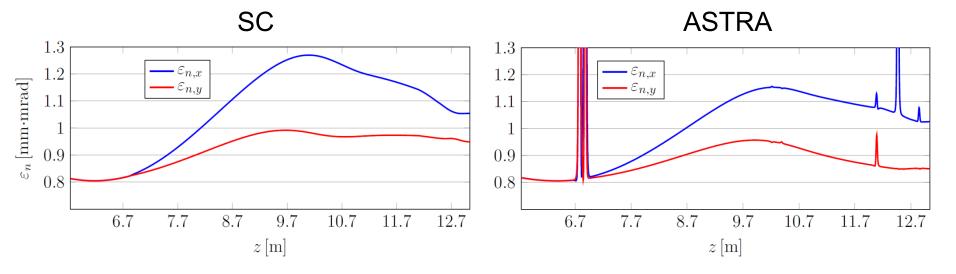
Space-charge matching of aperiodic and long lattices (II)

- > Test beam : 1 nC, 25 MeV/c, 20 ps, 0.8 mm·mrad
- > Matching goal (7.3 m downstream, 7 quads): $\beta_{x,y} = 1.0$ m, $\alpha_{x,y} = \pm 1.1$


> Matching result: SC (~20 min) \rightarrow β_x = 1.1 m, β_y = 0.8 m, α_x = 1.1, α_y = -1.1 ASTRA (~3.5 h / single run) \rightarrow β_x = 1.2 m, β_y = 1.0 m

Space-charge matching of aperiodic and long lattices (II)

- > Test beam: 1 nC, 25 MeV/c, 20 ps, 0.8 mm·mrad
- > Matching goal (7.3 m downstream, 7 quads): $\beta_{x,y} = 1.0$ m, $\alpha_{x,y} = \pm 1.1$


- > Matching result: SC (~20 min) \rightarrow β_x = 1.1 m, β_y = 0.8 m, α_x = 1.1, α_y = -1.1 ASTRA (~3.5 h / single run) \rightarrow β_x = 1.2 m, β_y = 1.0 m, α_x = 1.0, α_y = -0.8
- 1. the delivered mismatch is well acceptable

Space-charge matching of aperiodic and long lattices (II)

- > Test beam: 1 nC, 25 MeV/c, 20 ps, 0.8 mm·mrad
- > Matching goal (7.3 m downstream, 7 quads): $\beta_{x,y} = 1.0$ m, $\alpha_{x,y} = \pm 1.1$

- > Matching result: SC (~20 min) $\rightarrow \epsilon_x = 1.1$ mm·mrad, $\epsilon_y = 1.0$ mm·mrad ASTRA (~3.5 h / single run) $\rightarrow \epsilon_x = 1.0$ mm·mrad, $\epsilon_y = 0.9$ mm·mrad
- 1. the delivered mismatch is well acceptable
- 2. the non-linear space charge has a minor effect in the beam dynamics

Summary and outlook

- The incorporation of space charge in the transverse matching at PITZ is possible by:
 - combining the smooth-approximation theory with MAD → instant solution for periodic lattices of dense focusing
 - using the linear space-charge fields for a sliced bunch in SC → quick solution for irregular lattices
- > Both solutions yield very good results in the most time-efficient way
- Useful also for compressed beams of high energy and peak current (e.g. bunch compressor exits of FELs)
- > The performance of these methods has to be validated experimentally

Thanks to:

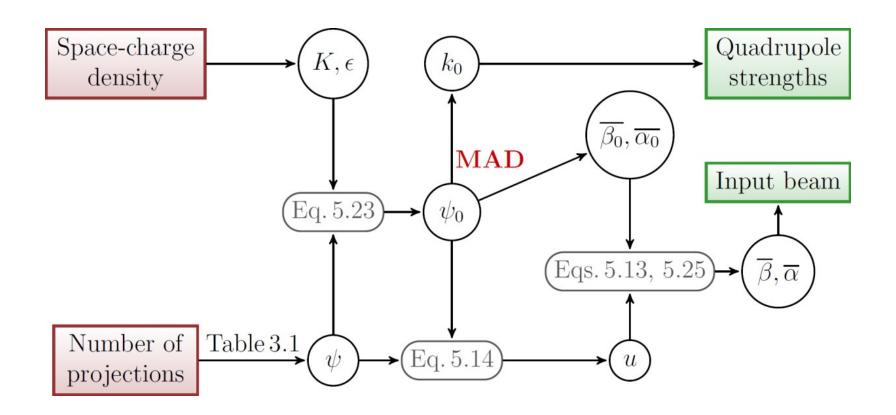
Alexey Bondarenko

Mikhail Krasilnikov

Barbara Marchetti

Aleksandr Matveenko

THANK YOU.



Backup Slides

