RF gun operation at PITZ.

Research Seminar Zeuthen, 05.12.2014

Motivation – Free Electron Lasers

The 4th generation of synchrotron radiation sources should provide:

Properties of the SR radiation:

- > Wavelength down to 0.1nm (Å)
- > Short pulses ≤ 100fs
- Coherent light
- > High peak Brilliance

Requirements for the electrons:

High phase-space density :

- short bunch length
- small energy spread
- high bunch charge
- small area in the phase space (Emittance)

Principal layout of a (single pass) Free Electron Lasers

FEL performance

- > performance of an FEL depends strongly on the electron beam quality delivered by the injector, since beam quality degrades in the accelerator
- > electron source must provide very small emittance electron beam

$$\lambda_{\min}[nm] \approx \frac{4\pi}{10} \frac{\varepsilon_n[nm mrad]}{\sqrt{I_p[kA] \cdot L_u[m]}}$$

- The phase space of the system is the space in which all possible states of the system are represented.
- Emittance is related to the volume/area occupied by the electron beam in phase space.
- 6D phase space can be split into 3x2D phase spaces: (x, x'); (y, y'); (z, p_z)
- Normalized transverse rms emittance for X plane:

$$\varepsilon_{n,x} = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$
$$\beta = \frac{v}{c}, \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

• Normalized transverse rms emittance for both planes:

$$\varepsilon_{n,xy} = \sqrt{\varepsilon_{n,x} \ \varepsilon_{n,y}}$$

Lower emittance ->

- -> Higher SR intensity
- Shorter undulator (saving €)
- > The space charge forces are by far the dominant "destroyer" of the emittance
- The beam quality degrades as the beam propagates downstream

High quality electron source is must for FEL

> Develop an electron source for the European XFEL:

 \Rightarrow very small transverse emittance (<1 mm mrad @ 1 nC)

 \Rightarrow stable production of short bunches with small energy spread

> Extensive R&D on photo-injectors in parallel to FLASH operation

> Compare detailed experimental results with simulations:

 \Rightarrow benchmark theoretical understanding of photo-injectors

> Prepare and characterize RF guns for subsequent operation at FLASH / XFEL

> Test new developments (laser, cathodes, beam diagnostics)

PITZ facility

Solenoids

- RF photoelectron gun
- Booster

Dump

- **Diagnostics:**
 - slit scan (transverse phase space)
 - streak camera, TDS, dipole (longitudinal) phase space)
 - screen stations (beam shape)
 - tomography (transverse phase space)
- New developments (e.g. plasma acceleration) >

Facility parameters

Parameter	Value
Beam bunch charge, nC	0.001 4
Beam momentum after gun / booster, MeV/c	7 / 25
Number of pulses in a train	≤800
Repetition rate, Hz	10
Maximum average beam current, µA	≤32
Optimized emittance (1nC), mm mrad	<0.9

Photoelectron gun setup

- PITZ photoelectron gun setup consists of:
- > RF cavity
 - L-band 1.6-cell copper (OFHC) cavity
 - Dry-ice cleaning \rightarrow low dark current (<100 μ A @ 6MW)
 - Cs₂Te photocathode (QE ~5-10 %) with load-lock system
 - LLRF control for amplitude and phase stability

Solenoids

- Dedicated for emittance compensation
- Max. on-axis field ~0.3 T (500 A in the main solenoid)
- Bucking solenoid for compensation of field at cathode
- Photocathode laser
 - Pulse train structure
 - Micropulses temporally and spatially shaped

PITZ RF-Gun

RF field gun

RF cavity

The RF photo gun cavity operates with a standing wave regime in the π -mode with resonant frequency of 1.3 GHz

Main parameters

Parameter	Value
Max. accelerating gradient at the cathode, MV/m	60
Frequency, MHz	1300
Unloaded quality factor	~20000
Beam momentum after gun, MeV/c	7
RF peak power, MW	6.5
RF pulse duration, µs	≤650
Repetition rate, Hz	10

Solenoids

The cavity is surrounded by a main solenoid and a bucking solenoid for focusing purposes and in order to compensate space charge forces.

Photocathode laser system (developed by MBI)

- > Ytterbium-doped YAG laser (Yb:YAG)
- > UV output pulses (4th harmonic)
 - λ = 257 nm
 - repetition rate = 1 MHz
 - up to 800 micro pulses/train
 - max. micro pulse energy: ~10 μJ
- Characterization of longitudinal laser (micro)pulse shape using Optical Sampling System (OSS)

<u>Time structure for FLASH and European XFEL \Rightarrow demonstration at PITZ</u>

Parameters	FLASH	European XFEL
max. RF repetition rate	10 Hz	10 Hz
max. train length	800 µs	650 µs
bunch spacing	1 µs	0.2 – 1 µs

Photocathode Laser: Temporal Pulse Shaping

UV pulses of different shapes can be produced at the PITZ photo cathode

Gaussian:

Simulated pulse-stacker

→ High flexibility of photo cathode laser system

Photocathode load-lock system

A load lock cathode system allows mounting and changing of cathodes while maintaining excellent ultrahigh vacuum conditions.

Cathode plug

Water cooling system

Water cooling system consists of:

- > Circle with warm water
- Big (slow) and small (fast) valves for controlling of cool water
- Pump stations (doubled due to safety issues)
- Temperature sensors along the water pipes and on the gun body

RF cavity water cooling channels (Gun 4 prototype)

- > 14 cooling cooling channels are surrounding gun body
- Input water goes to 2 reservoirs which serve the water cooling channels
- Water temperature, flow, speed and pressure detectors are installed at each of 14 output channels

RF system layout for a gun

Setup used in the period November 2012 – May 2014 (Gun 3.1, Gun 4.3, Gun 4.4)

Interlock (IL) system of PITZ

- The PITZ gun IL system is designed to protect the accelerator from damage. It quickly stops the LLRF.
- IL system collects signals from all IL devices and produces a common IL signal which stops the RF power.

Undisturbed RF pulse →

- \rightarrow IL event detected \rightarrow
- \rightarrow RF pulse interrupted \rightarrow
 - → Signals after IL event

(RF is off)

Measurement Setup

Measurements:

- > Frequency tuning
- > Measure π -mode and 0-mode frequencies using S11
- > Measure Q-values for π -mode and 0-mode
- > Bead-pull Measurements

Gun dark current measurements

Dry-ice sublimation-impulse cleaning → significant dark current reduction

Vertical cleaning setup with 110° rotating nozzle.

Dark current in Faraday cup versus RF power for different Guns and cathodes

Gun 4.2: dry-ice sublimation-impulse cleaning

(previous guns: high-pressure water rinsing) ->
significant DC reduction by factor of 10
(DC comes mainly from cathode not gun cavity)

Conditioning procedure for a gun

Step	Rep. Rate, Hz	RF pulse length, µs	RF power range, MW
1	5	10	0 Max
2	5	20	0 Max
3	5	50	0 Max
4	5	100	0 Max
5	10	10	0 Max
6	10	50	0 Max
7	10	100	0 Max
8	10	200	0 Max
9	10	400	0 Max
10	10	650	0 Max

* Max power for the Gun 4.3 and Gun 4.4 is 6.5 MW

Ramp-up procedure(defined by THALES):

- RF power increase by steps of max 0.2 MW every 15 min. for new RF pulse length (to be noted that circulator transparency gets higher at high average power)
- vacuum pressure < 10⁻⁷ mbar (Thales requirement)
- In case of significant vacuum or other trips:
 - re-ramp RF power from 0 with short pulses (10 μs)
 - restart with step 1 or step 5 respectively
 - · increase the pulse length in reasonable steps
- Initially, the rf gun solenoid is off (then sweep)
- No feedback

Beginning of Gun 4.4 run history (from 08.10.2013 until 02.12.2013)

Beam diagnostics

Bunch charge

- » Faraday Cup (FC)
- » Integrating Current Transformer (ICT)
- Beam size, shape and position
 - » view screen (YAG, OTR)
 - » beam position monitor
- > Beam momentum and momentum spread
 - » dipole magnets
- Bunch length, longitudinal phase space
 - » aerogel + streak camera
 - » RF deflecting cavity
 - » dipole magnets
- Transverse emittance and phase space
 - » screens and slit masks Igor Isaev | Research Seminar WS14/15 | 05.12.2014 | Seite 25
 - » phase-space tomography

Bunch charge measurements. Faraday Cup.

- Charge is transferred to FC
- FC is discharged through current measurement
- Integral of current over time equals charge

Bunch charge measurements. ICT.

- Charged particles act as 'single turn' in a transformer
- Proportional current is induced into windings
- Integral of current over time equals charge

Beam size, shape and position

Beam picture at the screen

Momentum and momentum spread measurements

Beam momentum and momentum spread

Igor Isaev | Research Seminar WS14/15 | 05.12.2014 | Seite 30

Idea: When space charge forces are too strong -> cut out small pieces of the actual beam and measure the divergence of these "beamlets"

PITZ Photo Injector Test Facility

Transverse emittance measurements. Slit scan.

Electron beam based phase stability measurements for Gun 4.4

PITZ Photo Injector Test Facility

- > Gun operation parameters
 - 6.5 MW in the gun
 - 400 µs RF pulse length
 - Gun is slightly overheated
- Phase stability measurements based on:
 - charge vs. gun phase dependence
 - charge fluctuation due to gun phase jitter

Gun phase jitter visible by beam includes RF phase jitter and gun temperature fluctuations

	Current WCS*	New WCS (test setup)
FB off	0.598 deg	0.475 deg
FB on	0.211 deg	0.140 deg

* WCS = water cooling system

Example of dark current observations for gun

Dark current at LOW.FC1 (Pgun=6.5MW, 200us) @ Maximum

Igor Isaev | Research Seminar WS14/15 | 05.12.2014 | Seite 34

Gun 4.3 DC@430A

Gun 4.3 DC@350A

History of guns operated at PITZ

Gun prototype	Period of location at PITZ	Cleaned by:	Cathode area design	Water cooling channels design	Comment
Gun 1	Jan 2004 - Oct 2005	HPWR	Watchband	13 channels, common I/O volumes	
Gun 2	Dec 2001 – Nov 2003	HPWR	Watchband	13 channels, common I/O volumes	 opening the gun showed damages in the cathode spring area
Gun 3.1	Mar 2006 - Nov 2006 Nov 2012 - Feb 2013	HPWR	Watchband	8 channels, common I/O volumes	 cathode problem currently installed at FLASH
Gun 3.2	Apr 2007 - Aug 2007	HPWR	Watchband	8 channels, common I/O volumes	 showed extreme traces from dark current emission as well as damages in the cathode spring area heavy damage of the cathode spring
Gun 4.1	Dec 2009 - Jun 2012	Dry-ice	Watchband	14 channels, separate I/O volumes	• the gun with which one the best emittance was achieved
Gun 4.2	Mar 2008 - Oct 2009 Jul 2014 – current time	Dry-ice	Watchband / Contact stripe	14 channels, separate I/O volumes	 damages in the cathode spring area after dismounting from FLASH due to IL problems new RF spring design (contact stripe) implemented in autumn 2012
** Gun 4.3	Mar 2013 - Jul 2013	Dry-ice	Contact stripe	14 channels, separate I/O volumes	 problem in the cathode holder nose area discovered -> new RF spring design (contact stripe) was applied currently installed at XFEL
Gun 4.4	Oct 2013 - May 2014	Dry-ice	Contact stripe	14 channels, separate I/O volumes	 first gun with new RF spring design (contact stripe) from the beginning cathode spring replaced by gold-plated spring

PITZ Team

DESY Zeuthen:

F. Stephan, M. Krasilnikov, G. Asova, H.-J. Grabosch, M. Groß, L. Hakobyan, I. Isaev, Y. Ivanisenko, L. Jachmann, M. Khojoyan, G. Klemz, W. Köhler, M. Krasilnikov, M. Mahgoub, D. Malyutin, M. Nozdrin, A. Oppelt, M. Otevrel, B. Petrosyan, S. Rimjaem, A. Shapovalov,, G. Vashchenko, S. Weidinger, R. Wenndorff
DESY, Hamburg: K. Flöttmann, M. Hoffmann, S. Lederer, H. Schlarb, S. Schreiber
MBI, Berlin: I. Templin, I. Will
INR, Moscow: V. Paramonov
HZB, Berlin: D. Richter

With contributions from PITZ partners:

DESY (Hamburg); Hamburg University; HZB (Berlin); INFN (Milan, Italy); INR (Troitsk, Russia); INRNE (Sofia, Bulgaria); LAL(Orsay, France); MBI(Berlin); STFC (Daresbury, UK); TUD (Darmstadt);

ThEP (Thailand); YERPHI (Yerevan, Armenia)

Thank you for your attention.

Igor Isaev | Research Seminar WS14/15 | 05.12.2014 | Seite 38

Free Electron Lasers

The beam quality degrades as the beam propagates downstream. An FEL needs coherent electrons.

For example: X-ray absorption by the material We have unknown object f(x, y). We can measure projection of this object $p_{\theta}(r)$ at different angle θ . Resulted $p_{\theta}(r)$ is called tomography transformation of the object f(x, y).

Procedure to restore unknown object from the set of projections is called inverse tomography transformation.

This procedures can be applied to the longitudinal phase space image.

Bunch length, longitudinal phase space (using dipole)

Tomographic reconstruction of the transverse phase space at PITZ

 Quadrupoles form a FODO lattice and oppose a complete 180° rotation of the beam in the normalized transverse phase space

Tomographic reconstruction of the transverse phase space at PITZ

 At equidistant phase advance values (≈ rotation angles) the screens capture the beam profile, creating projections of both transverse planes

Tomographic reconstruction of the transverse phase space at PITZ

 Calculate the transfer matrices (→ description of the phase space transformations) and reconstruct with the Maximum ENTropy algorithm

