RF guns for FELs

Mikhail Kraslinikov, Frank Stephan, DESY, Zeuthen site, Germany

Content:

- Motivation: Why electron source is so important for linac based FELs ?
- Basic principles and challenges
- Examples: low average current RF guns
 - medium average current RF guns
 - high average current RF guns
- comparing experimental results and designs
- future trends
- personal remark: details are important for good performance and reliable operation
- summary

One FEL key component: → the high brightness electron source

Why electron injector is so important ???

→ property of linacs: beam quality will DEGRADE during acceleration

Main components of short wavelength SASE-FELs:

Example: FLASH 1

electron source has to produce lowest possible emittance !!

Why electron injector is so important ...

• Why emittance must be small ...

FLASH

• e.g. XFEL goal: slice emittance(1nC) = 1.0 mm mrad@undulator

 if even smaller emittance ⇒ new horizons: shorter wavelength, higher repetition rate

European XFEL

Basic principles and challenges:

Generic Injector Layout

Example: European XFEL

in general:

- > RF gun (high gradient, amplitude and phase stability, 1 \leftrightarrow many \leftrightarrow cw bunches)
- Space charge compensating solenoids (positioning, no higher field components)*
- > Photo cathode laser system (synchronization, laser pulse shaping in time + space)
- **Booster** Cavity (synchronization, matched gradient and position**, later: high energy gain)
- > 3rd harm. cavity to linearize longitudinal phase space (synchr., matched gradient + phase)[5]
- Laser heater to increase uncorr. energy spread (prevent µ-bunching instability) [6,7,8]
- > Detailed diagnostics of electron and photo cathode laser beam
- > Bunch compression and then further acceleration of beam (→ wakefields)

"Emittance compensation" [1, 2, 3] ** "Emittance conservation" [3, 4]

Basic principles and challenges:

Emittance budget:
$$\varepsilon_{tot} = \sqrt{\varepsilon_{th}^2 + \varepsilon_{RF}^2 + \varepsilon_{SC}^2}$$

> thermal emittance $\varepsilon_{th} \propto \sigma_{x,y} * \sqrt{E_k}$ [9, 10] where $\sigma_{x,y} = \text{RMS}$ laser spot size @cathode $E_k = \text{mean kinetic energy of emitted } e^-$

- > **RF induced** emittance growth $\varepsilon_{RF} \propto \sigma_{x,y}^2 * \sigma_z^2$ [11], σ_z = electron bunch length
- > **Space charge** induced emittance growth ε_{SC} = subject to numerical optimization, different dependencies for different photo cathode laser shapes

High accelerating gradient at cathode

mitigates space charge effects

allows to extract higher Q for fixed beam dimensions cathode roughness plays larger role

- reliability issues, heat load
- > larger ε_{RF} for long bunches

Photo cathode laser pulse shaping (in time and space):
→ relaxes requirements on cathode gradient and gives a lot of additional flexibility !

high cathode gradient helps, but laser shaping is as important !

Low average current RF guns (<1 µA)

Most popular S-band gun, the BNL/SLAC/UCLA gun, > and its further developments \rightarrow the LCLS gun:

Realised design improvements:

- Z-coupling (reduces pulsed heating, increases vacuum pumping)
- **Racetrack to minimize quadrupole fields** >
- Deformation tuning to eliminate field > emission from tuners
- Iris reshaped, reduces field 10% below cathode
- Increased 0- π mode separation to 15MHz >
- All 3D features included in modeling (laser port and pickup probes, 3D fields used in Parmela simulation)

For more details see D. Dowell et al., SLAC, FEL 2007, Novosibirsk; R. Akre et al., PRST-AB 11, 030703 (2008); C. Limborg et al., "RF Design of the LCLS Gun", LCLS-TN-05-3; L. Xiao et al., "Dual feed rf gun design for the LCLS," Proc. 2005 PAC.

Mikhail Krasilnikov & Frank Stephan | RF guns for FELs | LINAC 2014, Geneva | 31.8. - 5.9. 2014 | Page 6

rf phase

Low average current RF guns (<1 µA)

ΡΙ

	a)	b)	c)	7
Location	LCLS, USA	SPARC_LAB, Italy		Collection of current
Gun type	NC RF gun	1.6 cell NC RF Gun		hoto injector
Experimental results or	ave regults	exp. results		
design goals/simulation	exp. results			parameters for
Operation mode		Gaussian	COMB	
Pulsed / CW	pulsed	pulsed		> LCLS
Cathode type	copper	со	pper	
Single bunch charge	20-250 pC	up to 1 nC up to $\sim 200 \text{ pC}$		> SPARC-I AB
Single bunch rep rate	120 Hz	10 Hz	~1 THz	
Length of bunch train	N/A	N/A	currently ≤ 4 pulses	
Bunch train rep rate	N/A	N/A	10 Hz	-
Total beam charge	2.4. 30 mC/a	up to 10 pC/s	up to 1 pC/s	average beam current
generated per second	2.4 - 50 IIC/8	up to 10 nC/s	up to 4 nC/s	in the nA range
DC voltage / gap	N/A	N/A	N/A	In the first range
Cathoda paak field	115 MV/m,	105 MV/m,	100 MV/m,	
Cathode peak held	50% at emission	50% at emission	50% at emission	
Beam energy at gun exit	6 MeV	$\sim 5 \text{ MeV}$	4.5 MeV	
Norm. transv. emittance	0.3 - 0.4 for 150 pC	~1 for 280 pC	0.54 for 2×90 pC	low omittoness
(RMS) in [mm mrad]	@ 135 MeV	@ 147.5 MeV	$@\sim 100 \text{ MeV}$	low emiliances
Norm. transv. slice emit-	0.3 - 0.4 for 150 pC	0.5 - 1 for 280 pC	N/ A	
tance (RMS) in [mm mrad]	@ 135 MeV (central slices)	@ 147.5 MeV	IN/A	
Charge fraction analyzed	95%	90 %	90 %	
RF frequency	2856 MHz	2856 MHz		S-band guine
Photo cathode laser:				
Laser medium	Ti:Sapphire	Ti:Sapphire		
Wavelength	253 nm	266 nm		
Temporal pulse shape		Gaussian	up to 4 Gaussians	7
	Gaussian, 2-3 ps FWHM	7 3 ps FWHM	(0.15 ps RMS)	
		7.5 ps r w mv	within ~4.3 ps	Iable from F. Stephan,
Transverse pulse shape	truncated Gaussian,	Gaussian,	Gaussian,	M. Krasilnikov (2014) [12] (DESY
Transverse puise snape	edge-edge 1mm for 150 pC	$\sigma_{x,y} \approx 0.35 \text{ mm}$	$\sigma_{x,y} \approx 0.35 \text{ mm}$	1.8. – 5.9. 2014 Page 7

PITZ: Measured emittance versus laser spot size for various charges w.r.t. simulations

- Measured emittance results set a benchmark on photo injector optimization
- •Optimum machine parameters (laser spot size, gun phase): experiment \neq simulations
- •Difference in the optimum laser spot size is bigger for higher charges (~good agreement for 100pC)

charge cut

5%

 1.324 ± 0.045

 1.064 ± 0.054

 0.711 ± 0.033

 0.596 ± 0.017

 0.289 ± 0.009

 $0.188 {\pm} 0.006$

 0.108 ± 0.001

 Simulations of the emission need to be improved

0%

 0.121 ± 0.001

M. Krasilnikov et al.	, PRST-AB 15 ,	100701	(2012)
-----------------------	-----------------------	--------	--------

TABLE IV. Core xy-emittance (mm mrad) measured for various charges and gun phases. Only statistical errors are shown

bunch

charge

2.0 nC 1.558 ± 0.050 $0 \deg$ 6 deg 1.251 ± 0.064 $0 \deg$ 0.833 ± 0.038 6 deg 0.696 ± 0.020 0.25 nC $0 \deg$ 0.328 ± 0.010 0.10 nC 0 deg 0.212 ± 0.006

gun

phase

 $0 \deg$

10%

 1.173 ± 0.039

 0.939 ± 0.048

 0.629 ± 0.029

 0.529 ± 0.015

 0.260 ± 0.008

 0.170 ± 0.006

 0.098 ± 0.001

> The APEX gun at Berkeley: a NC gun for CW operation

> 186MHz:

- reduced cathode gradient w.r.t. L-/S-band
- low beam energy at gun exit
- + reduced RF power density on surface
- + allows longer laser pulse on cathode
 - → reduced **space charge density**
- + good vacuum conductivity
 - \rightarrow high QE photo cathodes (Cs₂Te, CsK₂Sb)
 - \rightarrow reduces power request for cathode laser
- \succ Commissioning ongoing successfully \rightarrow table
 - dark current @19.5 MV/m → 350 nA
 - 300 µA operation (300 pC @1MHz)
 - Cs_2Te lifetime (1/e) is 3 days

Continuous extension is ongoing

	a)	b)	c)	d)	Ī
Location	DESY (PITZ), Germany			LBNL, USA	Collect
Gun type	$1\frac{1}{2}$ cell NC RF gun		NC RF gun, $\frac{1}{4}$ -wave cavity		
Experimental results or design goals/simulation	design goals / simulations	exp. results	exp. results	exp. results & simulations	
Operation mode	baseline	baseline	lower charge	-	param
Pulsed / CW		pulsed		pulsed and CW demonstrated	
Cathode type		Cs ₂ Te		testing Cs ₂ Te, CsK ₂ Sb later	> APE
Single bunch charge	1 nC	1 nC	250 pC	10 fC to 500 pC demonstrated	
Single bunch rep rate	4.5 MHz	1 MHz, 4.5	MHz later	20 Hz to 1 MHz	hiah C
Length of bunch train	600 µs	600 μ s, ≤ 8	$00\mu s$ possib.	N/A	ingi s
Bunch train rep rate		10 Hz		N/A	
Total beam charge generated per second	27 μC/s	6 μC/s	1.5 μC/s	up to 300 µC/s demonstrated, up to 1 mC/s possible	avera
DC voltage / gap	N/A	N/A	N/A	N/A	
Cathode peak field	60 MV/m	~ 60	MV/m	~21 MV/m	1
Beam energy at gun exit	6.6 MeV	~6.5	MeV	800 keV	†
Norm. transv. emittance (RMS) in [mm mrad]	0.9 @ ~140 MeV	$\varepsilon_{x,y} = 0.60$ @ 25 MeV	$\varepsilon_{x,y} = 0.29$ @ 25 MeV	simulated: 0.2 to 0.7 for 10 to 300 pC	low er
Norm. transv. slice emit- tance (RMS) in [mm mrad]	1.4 for 1 nC at 17.5 GeV	N/A	N/A	simulated: 0.1 to 0.6 for 10 to 300 pC	*
Charge fraction analyzed	100 %	95 %	95 %	95 %	
RF frequency	quency 1.3 GHz			186 MHz	
Photo cathode laser:				- -	
Laser medium	Yb:YAG		Yb-doped fiber		
Wavelength	257 nm		266 nm and 532 nm available	extens	
Temporal pulse shape	flat-top, 2 ps rise/fall time, 20 ps FWHM	flat $\leq 2 \text{ ps ris}$ $\sim 22 \text{ ps}$	-top e/fall time FWHM	flat-top, ~1 ps rise/fall time, 50 ps FWHM	laser s
- Transverse pulse shape	flat-top, 0.53 mm RMS	~flat-top, ~0.3 mm RMS	~flat-top, ~0.18 mm RMS	Gaussian, 0.05 - 0.5 mm, truncation possible	Table from F. M. Krasilniko

Collection of current photo injector parameters for

> PITZ @ DESY

APEX @ LBNL

high QE photo cathodes

average beam current in the μA range

low emittances

L-band and VHF guns

extensive photo cathode laser shaping

Table from F. Stephan, M. Krasilnikov (2014) [12]

High average current RF guns $(I_{av} \ge 1 \text{ mA})$

- ▶ High current: → high QE photo cathode (NC or SC?), high rep. rate laser, → high duty cycle
- → an interesting example for SRF gun: the 3.5 cell (1.3 GHz) SC RF gun @ HZDR:
- > gun I cavity was limited by strong field emission $\rightarrow E_{launch,cathode}$ only 2.2 - 2.6 MV/m, but still ...
 - first FEL operation with an SRF gun at ELBE
 - excellent life time of NC Cs₂Te cathode was demonstrated (264 C, 400 µA)

High average current RF guns (I_{av} > 1mA)

Collection of photo injector parameters for

- > (DC gun @ Cornell)
- NC RF gun @ Boeing
- > 3.5 cell SRF gun @ HZDR

	a)	b)	c)	d)	e)	f)	[
Location	Co	ornell, USA	Boeing, USA	HZ Dresden Rossendorf, Germany		İ		
Gun type		DC Gun	4 cell NC RF Gun	SC RF gun, $3\frac{1}{2}$ cell elliptical cavity		[
Experimental results or design goals/simulation	design goals	exp. results	exp. results	design goals	/ simulations	exp. results		high QE photo
Operation mode	high current	measurement mode	-	ELBE	high charge	ELBE		
Pulsed / CW	CW	pulsed, CW possible	pulsed	CW, p	ulsed operation	possible		cathodes
Cathode type	alkali-Sb / GaAs	GaAs	K ₂ CsSb	Cs ₂ Te				
Single bunch charge	77 pC	77 pC	1 - 7 nC	77 pC	1 nC	max. 77 pC	ĺ	
Single bunch rep rate	1.3 GHz	50 MHz, 1.3 GHz possible	27 MHz	13 MHz	0.1 - 0.5 MHz	13 MHz	ĺ	
Length of bunch train	N/A	0.1 to 10 μ s	8.3 ms	N/A	N/A	N/A	Γ	
Bunch train rep rate	N/A	1 - 5 kHz	30 Hz	N/A	N/A	N/A		av. beam current
Total beam charge generated per second	100 mC/s	\sim 1 μ C/s	6.7 - 47 mC/s	1 mC/s	0.5 mC/s	max. 0.5 mC/s	\leq	in the mA range
DC voltage / gap	500 kV / 5 cm	350 kV / 5 cm	N/A	N/A	N/A	N/A		
Cathode peak field	5 - 6 MV/m	4 MV/m	26 MV/m	20 M	IV/m	7.6 MV/m	ĺ	
Beam energy at gun exit	500 keV	350 keV	5 MeV	9.4 N	MeV	3.3 MeV	ĺ	
Norm. transv. emittance (RMS) in [mm mrad]	≤0.3 @ 10 - 12 MeV	$\varepsilon_x = 0.51, \ \varepsilon_y = 0.29$ @ 8 MeV	5 - 10 @ 5 MeV	1 @ 9.4 MeV	2.5 @ 9.4 MeV	3±1 @ 3.3 MeV		
Norm. transv. slice emit- tance (RMS) in [mm mrad]	≤0.3 @ 10 - 12 MeV	$\varepsilon_{slice,x} = 0.4 - 0.5$ for central slices	N/A	N/A	N/A	N/A		from DC to
Charge fraction analyzed	100 %	90 %	90 %	100 %	100 %	100 %		
RF frequency	1.3 GHz for	buncher and booster	433 MHz		1.3 GHz	•	\leq	L-band guns
Photo cathode laser:								
Laser medium	Yb-doped fiber	Yb-doped fiber	Nd:YLF	Nd:glass & Nd:YLF				
Wavelength	520 nm	520 nm	527 nm		258 nm		ļ	
Temporal pulse shape	flat-top, 20-30 ps	flat-top, ~ 27 ps FWHM, <1 ps rise/fall time	Gaussian, 53 ps FWHM	Gaussian, 4 ps FWHM	Gaussian, 15 ps FWHM	Gaussian, 4 ps FWHM		
Transverse pulse shape	flat-top, 2.5 mm diameter	Gaussian truncated at 35% intensity, 2mm diam.	Gaussian, 3 - 5 mm FWHM	flat-top, 1-3 mm diam.	flat-top, 5 mm diam.	flat-top, $\sim 2.7 \text{ mm diam.}$		

Mikhail Krasilnikov & Frank Stephan | RF guns for FELs | LINAC 2014, Geneva | 31.8. - 5.9. 2014 | Page 13

Table from F. Stephan, M. Krasilnikov (2014) [12]

Comparison of experimental results / designs

 Comparing the measured single bunch emittance

- Notice the different charge fractions analyzed
- Notice that the values are measured at different beam energies and with different measurement methods

> Comparing the "Average Injector Brightness" [A / (mm mrad)²] $B_{injector} = Q_{bunch} \cdot NoP \cdot RR / (\varepsilon_{n,x} \cdot \varepsilon_{n,y})$

	# puises		
charge	in train	rate	emittances

 Design average currents and measured single bunch emittances have been used.

Lower RF frequency yields higher Binjector due to higher I injector

Figures from F. Stephan, M. Krasilnikov (2014) [12] | RF guns for FELs | LINAC 2014, Geneva | 31.8. – 5.9. 2014 | Page 14

Future trends: Photo cathode laser pulse shaping → towards 3D ellipsoid

Main idea: minimize the impact of the space charge on the transverse emittance.

Potential of 3D ellips. for all FELs:

- > 30-50% lower av. slice emittance
- Better longitudinal compression
- Reduced beam halo
- Less sensitivity to machine settings
- German-Russian collaboration:
- IAP (Nizhny Novgorod) builds laser
- Installation at PITZ starts autumn 2014

Future trends: Higher average currents

> Photo cathode **laser** developments:

- Laser pulse shaping (time + space) requires significant overhead in laser peak power
- High average beam currents in addition require high average laser power
- Extensive developments needed to overcome e.g. thermal lensing + pulse heating and to allow stable and reliable operation 24/7 (often specific requests for planned application)

- > Photo cathode developments needed to relax the laser requirements:
 - High quantum efficiency at visible wavelength ('cathodes for green light')
 → less power needed at basic laser wavelength, allows to omit second conversion stage (laser pulse deformation, sensitivity on laser power)
 - Reliable and robust, low thermal emittance

Future trends: A plasma based electron source

- > two-component gas plasma cell [e.g. H(13.6 eV) and He(24.6 eV)]
 - \rightarrow beam driven plasma wave in H \rightarrow accelerating gradients >10GV/m
 - → witness electron bunch by very local laser ioniziation of He inside plasma wave
- emittance estimate inside plasma cavity: 0.03 mm mrad for 2 pC bunch, but I_{peak}=300 A
- > Difficulties: **synchronization**, **energy spread**, **extraction** of bunch from plasma, ...

Details are important: here contact cathode ↔ cavity

original watchband design

+ robust spring

- severe damage on peaked nose (part of the gun), mainly when running at high peak power and long pulse length

Gun4.1

contact stripe design

+ spring insert can be exchanged

- originally: breaking of leaves, limited electrical contact

 \circ gold coating + electro polishing seems to help

"watchband reloaded"

- + robust spring
- + equalized radii
- still to be tested in experiment !

Courtesy S. Lederer

Details are important: here water flow simulations + tests

> Gun5 has: RF pick ups, elliptical irises, circular cell shape, more&smaller cooling channels → internal water distribution → test

References

[1] B.E. Carlsten, Nucl. Instr. Meth. A285, 313-319 (1989).

[2] B.E. Carlsten, Part. Acc. 49, 27-65 (1995).

[3] L. Serafini and J.B. Rosenzweig, Phys. Rev. E 55, 7565-7590 (1997).

[4] M. Ferrario, J.E. Clendenin, D.T. Palmer, J.B. Rosenzweig, L. Serafini, "HONDYN Study for the LCLS RF Photo-Injector", SLAC-PUB-8400, March 2000.

[5] K. Flöttmann, T. Limberg, P. Piot, "Generation of ultrashot electron bunches by cancellation of nonlinear distortions in the longitudinal phase space", TESLA FEL Report 2001-06.

[6] E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, "An analitical description of longitudinal phase space distortions in magnetic bunch compressors", NIM A 483 (2002) 516-520.

[7] Z. Huang et al., "Supression of microbunching instability in the linac coherent light sources", PRST AB, 7, 074401 (2004).

[8] Z. Huang et al., "Measurements of the LCLS laser heater and its impact on the x-ray FEL performance", SLAC-PUB-13854.

[9] K. Flöttmann, "Note on the Thermal Emittance of Electrons Emitted by Cesium Telluride Photo Cathodes", TESLA-FEL report 1997-01, DESY, 1997.

[10] D. Dowell and J. Smerge, "Quantum efficiency and thermal emittance of metal photocathodes", PRST-AB, 12, 074201 (2009).

[11] K.-J. Kim "Rf and space charge effects in rf guns", NIM A 275, 201 (1989).

[12] F. Stephan, M. Krasilnikov (2014) "High brightness photo injectors for brilliant light sources". In: E. Jaeschke, S. Khan, J. Schneider, J. Hastings (ed) "Synchrotron Light Sources and Free-Electron Lasers". Springer, Dordrecht (in preparation).

+ references listed on individual slights

Summary

- > The electron source is one of the **key components** of FELs.
- Different FEL facilities (average beam current, beam quality, linac type, ...) need different electron sources > no universal solution !
- Different types of electron source have been developed successfully for the specific demands of "their" FEL -> from nA to mA beam currents !
- Common issues: stable and reliable
 - RF design,
 - photo cathode laser system,
 - synchronization,
 - diagnostics, ...
- For high "Average Injector Brightness" (^{average current}/_{emittance²}) lower RF frequencies seem to be beneficial.
- > Ultimate beam quality requires 3D ellipsoidal electron bunches (→ laser pulse shaping).
- > Higher average beam current get increasingly important (e.g. for ERLs).
- > Plasma acceleration might offer interesting options in future.

