Design of Plasma Chamber at PITZ

Plasma cell for self-modulation experiment at PITZ

Outline

- Short Introduction
- > Plasma chamber
 - Design
 - Fabrication
 - Preliminary results

Matthias Groß

LAOLA Technical Seminar, DESY 24. June 2014

EAAC Workshop 2013: Patric Muggli, AWAKE: A Proton-Driven Plasma Wakefield Experiment at CERN

15 m

e⁻ spectrometer

0 1-2GeV

OTR/CTR

0.6

Diagnostics

EOS

Diagnostic

Laser dump

Diagnostics

- > Use high energy proton beams from SPS to drive plasma wave
- Convert proton beam energy to accelerate electron beam in single stage

7-10 m long 2 mm wide

Plasma

Rb Vapor Plasma 10¹⁴-10¹⁵ cm⁻³

10 m

laser

Caldwell et al., Nature Physics (2009):

 $E_{z,max} = 240(MV \ m^{-1}) \left(\frac{N}{4 \times 10^{10}}\right)$

Vapor

20 m

PHIN RF gun

10-20 MeV 1.2x10⁹ e

3 mm σ, 0.25 σ,

 $\varepsilon_{N} = 2 \text{ mm-mrad}$

fast

valve

CNGS experimental area

> High accelerating gradient requires
— short bunches (σ_z less than 100µm)

 Existing proton machines produce
long bunches (10cm)

Courtesy: Patric Muggli, Erdem Öz

400 GeV 3x10¹¹ p⁺

12 cm $\sigma_z 0.2 \sigma_r$ $\varepsilon_N = 3.5 \text{ mm-mrad}$

from SPS

120 fs <450 mJ

lonizing

Laser Pulse

Matthias Groß | LAOLA Technical Seminar | 24. June 2014 | Seite 2

Plasma Cell Design

Plasma Cell Parts

Stainless steel cell body

Copper heat distribution

Heat insulation foam bricks

Assembled Plasma Cell

Plasma Cell Setup

Scattering at Electron Window

> ASTRA simulations: electron beam scattering impedes focusing into the plasma

Maximal agreeable scattering angle: 0.2 mrad

Theory: Multiple Coulomb Scattering

From: Claus Grupen "Teilchendetektoren": Multiple Coulomb Scattering

The rms of the projected scattering angle distribution:

$$\theta_{rms} = \frac{13.6MeV}{\beta pc} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right]$$

$$\beta pc = 22MeV; \ z = 1; \ X_0 = 0.28m$$

- Important: Radiation length X₀
 - Gold: 0.3 cm
 - Kapton (Polyimide): 28.6 cm
 - Beryllium: 35.3 cm
 - Polyethylene: 50.3 cm

Simulation: FLUKA

Experiment in PITZ Beam Line – 50um Kapton

Scattering Results

Summary

- Self-modulation experiments are in preparation
- PITZ plasma cell was designed and fabricated
- > Thin electron window is necessary to minimize scattering

Beam Line Remodeling

