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ABSTRACT

Beam tomography research at Daresbury Laboratory has focussed on the development of normalised
phase space techniques—starting with the idea of sampling tomographic projections at equal phase
advances. This idea has influenced the design and operation of the tomography sections at the Photo
Injector Test Facility at Zeuthen (PITZ) and at the Accelerator and Lasers in Combined Experiments
(ALICE) at Daresbury. We have studied the feasibility of using normalised phase space to measure the
effect of space charge. Quadrupole scan measurements are carried out at two different parts of a
beamline. Reconstructions at the same location give results that are clearly rotated with respect to each
other in normalised phase space. We are able to show that a significant part of this rotation can be
attributed to the effect of space charge. We show how the normalised phase space technique can be used
to increase the reliability of the Maximum Entropy Technique (MENT). While MENT is known for its
ability to work with just a few projections, the accuracy of its reconstructions has seldom been
questioned. We show that for typical phase space distributions, MENT could produce results that look
quite different from the original. We demonstrate that a normalised phase space technique could give
results that are closer to the actual distribution. We also present simpler ways of deriving the phase

space tomography formalism and the Maximum Entropy Technique.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Phase space tomography [1,2] is a measurement technique that
is used in accelerators to characterise the phase space of a particle
beam. It has been used in a number of accelerators, including
PITZ [3], UMER [4], SNS, PSI [5], CERN [6], BNL [8], FLASH [7] and
TRIUMF [9]. The beam distribution measured in coordinate space
can be mapped mathematically to a phase space, and the rotation
angle in the phase space can be varied by changing the strengths
of optical elements along the beamline. This mapping to rigid
rotation makes it possible to reconstruct the phase space distribu-
tion using standard tomographic techniques.

In a simple implementation, the optical element could just be a
drift space. Suppose that we wish to determine the transverse,
horizontal phase space at a particular location in a beamline.
Suppose that there is a scintillating screen at a second location
further along the beamline. The horizontal phase space at the
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screen is related to that at the first location. Assuming linear
mapping, the relation can be represented by a matrix. This matrix
produces a geometrical transformation on the phase space, usually
a combination of shearing and stretching. The tomographic
method involves projecting the screen image on the horizontal
axis. The geometric connection means that this can be related to
the projection of the phase space at the first location in a rotated
direction. This angle can be varied by changing the length of the
drift space. By measuring the projections for a range of drift
distances, the projections for a range of angles at the first location
can be obtained. The phase space distribution can be recon-
structed from these projections using techniques like Filtered Back
Projection (FBP) or Maximum Entropy Technique (MENT). In practice,
the setup will involve a combination of drift spaces and other
elements, such as quadrupoles or solenoids. Measurements on long-
itudinal phase space also require RF cavities. In this review we focus
on transverse phase space.

Phase space tomography has been implemented in different
ways in a number of accelerators. At ALICE [10], it follows closely
the basic theory described above. It uses a quadrupole to change
the rotation angle by changing the quadrupole strength. The
quadrupole strength is varied using a computer, and screen images


www.sciencedirect.com/science/journal/01689002
www.elsevier.com/locate/nima
http://dx.doi.org/10.1016/j.nima.2014.03.050
http://dx.doi.org/10.1016/j.nima.2014.03.050
http://dx.doi.org/10.1016/j.nima.2014.03.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2014.03.050&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2014.03.050&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2014.03.050&domain=pdf
mailto:kmhock1@gmail.com
http://dx.doi.org/10.1016/j.nima.2014.03.050

K.M. Hock et al. / Nuclear Instruments and Methods in Physics Research A 753 (2014) 38-55 39

are captured automatically and then processed using FBP. How-
ever, the range of angles accessible by a single quadrupole is
limited to a smaller range than the full 180°. At PITZ [3], the
rotation angle is varied using a combination of drift spaces and
quadrupoles. In practice it may not be easy to build a setup to
move a screen mechanically along a beampipe in order to vary the
drift distance. The PITZ tomography section consists of four
screens to measure the beam distribution in coordinate space at
different locations along the beampipe. The quadrupole strengths
are not normally varied during a measurement. This means that
only four projections are measured. This small number of projec-
tion angles makes it better to use MENT for reconstruction.
At ALICE, PSI and SNS [5], the tomography diagnostic sections have
also been designed for MENT with between three and five screens.
At TRIUMF [9], a wire scanner with a quadrupole is used instead of
screens. There are wires at three fixed angles. These measure the
projections in three directions at the transverse coordinate space.
MENT is used for reconstruction. At UMER [4], the strengths of a few
quadrupoles are adjusted to obtain the full 180° range of angles. The
reconstruction is carried out using FBP. The reconstruction algorithm
is modified to include space charge effects.

Phase space tomography research at ALICE over the past three
years has focussed on two main areas: development of the
normalised phase space method, and more recently development
of 4D reconstruction. Development of the normalised phase space
method has been primarily motivated by the idea of using equal
phase advances in phase space tomography [12]. The phase
advance here refers to betatron phase advance [11]. There are four
screens separated by FODO cells. This setup is designed to give 45°
phase advance in between adjacent screens in transverse phase
space in both horizontal and vertical directions. Together, the four
screens give four projections at equal phase advances over 180°.
This design has been adopted for the construction of the PITZ
tomography section and used in tomographic measurements since
then [3]. The same idea has been used in the design and
construction of the ALICE tomography section [13,14]. There are
three screens with FODO cells in between adjacent screens. Phase
advance between adjacent screens is adjusted to be 60°. This gives
three projections with equal phase advances in between. However,
at ALICE we have not had the chance to carry out such a
measurement. In the beam time available, we have mainly used
a quadrupole scan in which the quadrupole strength is varied
rapidly using a computer and images are captured at a single
screen.

At PITZ where only four projections are available, MENT is used
for reconstructing the phase space. The use of such a small amount
of measured data to reconstruct the whole phase space means that
the magnitude of error is uncertain. Simulations on hypothetical
distributions at PITZ have demonstrated that using equal phase
advances gives the smallest error in emittances of reconstructed
distributions [15]. However, at the time of the construction of first
PITZ and then ALICE, there has been no theoretical justification as
to why equal phase advances should produce optimal reconstruc-
tions. This has been a question because there is no obvious
connection between phase advance and the method of phase
space tomography. The only angle that exists in phase space
tomography is the projection angle and this is not equal to phase
advance. The explanation comes later when we show that the
phase advance is in fact equal to the projection angle in normal-
ised phase space [16]. A Gaussian distribution in normalised phase
space would appear roughly circular. Having equal phase advances
means sampling projections at equal angles in this phase space.
This would be the natural sampling interval, particularly if the
variation of distribution with angle is small. Conversely, a dis-
tribution in real phase space tends to be long and narrow because
of long drift spaces in beamlines. Such a distribution varies

strongly with angle. Using equal angle intervals would either
sample too little in the sharply varying directions or require too
many projections over the full 180° range.

This realisation has not only provided a theoretical justification
for the idea and use of equal phase advances, but also opens up
new areas of applications. So far, we have shown that normalised
phase space can improve resolution for FBP [16], reduce distortion
for MENT [17], and detect linear errors in reconstructions [10].

In Section 2 of this paper, we provide a simple derivation
of phase space tomography and a simple derivation of MENT.
In Section 3, we review the use of the idea of equal phase advances
on the designs of PITZ and ALICE, and how our normalised phase
space method has developed. In Section 4, we summarise our
measurement procedure at ALICE and our reconstruction proce-
dure. In Section 5, we discuss the observation of space charge
effect by comparing quadrupole scan measurements at two
different locations. In Section 6, we demonstrate the use of
normalised phase space to improve the reliability of MENT
reconstructions. In Section 7, we conclude with a summary and
some suggestions for future work.

2. Tomography
2.1. Basic principles

We review here the basic theory of tomography. The goal is
essentially to derive a formula to calculate a 2D distribution
function f(x,x’) from its projections. The following steps are
summarised from [18].

We first define the projection. Consider the axes (s,t) rotated by
angle @ in Fig. 1. The coordinates are related to (x,x') by

s=x cos @+Xx sin 0

t= —x sin 8+x' cos 0 (1)
The projection of f(x,x’) along the s-axis is given by

Pos)= [ foxs..x(s. 0y e @)
This is an integral along a line of constant s. This line is called a ray.

It is perpendicular to the s-axis, which is the direction of the
projection.

o
of
Q‘

Fig. 1. A projection in the direction of s is obtained by integrating along lines
(called rays) that are perpendicular to the s-axis.
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The Fourier transform of the projection is

Sp(w) = / Py(s)e ~2™ws ds 3)
Substituting the definition of projection

Sp(w) = / { / fx) dt} e 2w g (4)
and transforming to (x,x’) coordinates

Sg(W) _ / / f(X, X/)e—iZﬂw(x cos O+x' sin 6) dx dx’ (5)
In terms of the following coordinates:

u=w cos 6

v=w sin 6 (6)

we see that Sy(w) is the same as the 2D Fourier transform

F(u,v)= /°° /oo F(x, X)e~ 2AXUHXY) Gy g/ 7
So
Sp(w) =F(w,0) =F(w cos 6,w sin 6) ®)

where (w, 0) are the polar coordinates in the 2D spatial frequency
domain.
Inverting the transform gives

fx,x)= /.OO /oo F(u, v)el27@+v¥) gy dy 9)
Transforming to polar coordinates:
fx,x)= /02” /Ooo F(w, Q)27 cos 0+x' sin Oy, gy (@) (10)
Next split this into two parts:
fx,x)= /ﬂ /oo F(w, Q)ei27w cos 0+x sin Oy gy dg

0 0

2
+ / /oo F(W, 9+ﬂ')€i2ﬂw[x cos (0 +m)+X sin(9+7z)]w dw do
JO JO

where F(w, ) is the Fourier transform of the projection Sg(w):
fx,x)= / {/ Sp(w)|w|e?™s dw| d@ (14)
JO J —o0

This provides the relation between projections and function
fx,x).

The Filtered Back Projection technique for computing f(x,x’)
from the projections is obtained by defining

Q)= [ Sswiwie?™ dw 1s)

Multiplying a Fourier transform Sg(w) by a function |w| of
frequency and then inverting the transform is often called filtering.
Since Sy(w) is the Fourier transform of the projection, Qy(s) is
called the filtered projection.

From Eq. (14)

foex)= /0 Qy(s) dO (16)

This is like spreading Qy(s) back over the (x,x’) space and then
summing up for all angles. For this reason, Qg(s) is called the back
projection.

In principle, the two equations above can be discretised and
used to reconstruct f(x,x’) numerically from the projections Py(s).
This reconstruction technique is called Filtered Back Projection.

2.2. Phase space tomography

A standard derivation of the equations used in beam tomogra-
phy is given in [2]. Rather than just summarising the results, we
reproduce here an alternative derivation which gives insight into
the geometric nature of the method.

We need to derive the relation between a projection at B in the
xp-direction and the corresponding projection at A. Specifically, we
want to find (i) a formula for the direction @ of the projection at A;
(ii) a formula to relate projection variables s and xp; and (iii) a
formula to relate a projection at B to a projection at A. We assume
that the mapping is given:

an Xp My Mo\ [ Xa (17)
Then use this property of Fourier transform: Xg )\ M21 My X
Fw,0+m)=F(-w,0) (12)  The effect of this mapping is a geometrical transformation. For a
and rewrite the transform as drift space, it is a shear in the x-direction, as illustrated in Fig. 2.
For a thin quadrupole, it is a shear in the x'-direction. For other
T OO0 . . .
fix x’)=/ U F(w, 0)|w|e2™s dw] do (13) elements, it could be some combination of shear, stretch and
0 — rotation.
(a) (b) .
ﬂ\
Q ®
t" - —.\_ _ ')
/
1 , /
- _." LT “ .
/ 4 5
\ > X, + —>Xp
AN o r -
o ) - ’
| s \ // L // Pe
! )|y ! / , L s
L Y - K 7T_ P
1
12 2

Fig. 2. The x intercept a at A is mapped to point P at B, and y intercept b is mapped to point Q. Projection variable s at A corresponds to projection variable xp at B.

(a) Reconstruction location and (b) measurement point.
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Consider a ray line 1 at B in Fig. 2 and the corresponding ray
line 1 at A. Line 1 at A is mapped to line 1 at B by the mapping in
Eq. (17). The intercepts p and g at A are mapped to points P and Q
at B. The coordinates of P are (pM;;,pM;;). The coordinates of Q
are (qgM1,,qM,,). Since P and Q lie on the same vertical line, they
have the same xz coordinate:

Xp =pMyq = qMy;. (18)

From triangle Opq in Fig. 2, angle @ is equal to angle Oqp. So the
tangent of the angle @ is p/q. From Eq. (18), we obtain

p_Mi
tan 0 =<=—-= 19
q Mn (19
This gives the formula for the direction @ of the projection at A.
From Eq. (18), the ratio xg/s is equal to pM;,/s. From triangle
Opq in Fig. 2, p/s is equal to secd. Using the identity
1+ tan? O =sec? 0, Eq. (19) gives

X_B_GM]]
s s
=My, secd
=M11\/]+tanze
MZ
=My 1+M—;2

11

=/ M3, +M3, (20)

This ratio is the scaling factor a relating projection variables
s and xg.

Compare the distance interval between lines 1 and 2 at B, and
the corresponding interval at A. The interval at A is clearly scaled
down by the above scaling factor a. Since the number of particles
within this interval must be the same at A and at B, the projection
pa at A must be scaled up from the projection pg at B by a. This
observation gives the formula to transform a projection at B to a
projection at A:

DPa(s) = apg(as) 21

where a is xp/s.

This completes the derivation. The full set of equations needed
to transform projections from measurement point to reconstruc-
tion location are

My
tan == 22
My, (22)
a=/M3;+Mt, (23)
_x
s=7 (24)
Da = app. (25)

After this transformation, each projection at A corresponds to a
simple rotation by angle 6.

2.3. Maximum Entropy Technique

Our implementation of MENT follows closely the formalism
described in Ref. [19]. We provide here a simpler derivation that
allows us to replace most of the mathematical steps leading to the
MENT equation with a pictorial explanation.

The initial steps in the MENT theory would be familiar to
students of physics who have studied the derivation of Boltzmann
distribution. In a quantum system of particles, each particle can
only occupy discrete energy levels. There are different arrange-
ments of particles that can give the same number at each level.
The Boltzmann distribution is the most likely distribution. This is
obtained by finding the distribution that has the greatest number

of arrangements. Each arrangement must obey the constraints that
the total number of particles and the total energy are both fixed.

In MENT, we divide a region of phase space into a grid of tiny
squares (tiny with respect to the size of the distribution) as shown
in Fig. 3. Each square corresponds to an energy level. A phase
space distribution tells us the number of particles in each square.
MENT aims to find the most likely distribution. This is obtained by
finding the one with the largest number of possible arrangements.
The constraints are that the resulting distribution must give
projections that agree with the measured ones at each angle.

We first review the mathematical steps leading to the Boltz-
mann distribution [20], and then show how this can be general-
ised directly to MENT. Consider a system of N distinguishable
particles. Each particle can occupy the energy levels ¢;, and there
are n; particles at each level. The constraints are that the number
of particles

N=ny+ny+--- (26)
and the total energy
U=nje1+ny€x+ - (27)

are fixed. A distribution is given by the set of numbers (nq,n,...).
The number of possible arrangements for this distribution is

N!

:Tl]”’lzl... (28)

We want to find the distribution for which W is maximum. This
would be easier if we maximise In W instead because Stirling's
approximation makes the factorials simpler:

InWaNInN-N)—(ny Inn;—ny)—(ny Inny —ny)—--- (29)

In physics, entropy is given by kg In W where kg is Boltzmann's
constant. Hence the name Maximum Entropy Technique. We then
apply the method of Lagrange multipliers [20]. First we make the
Lagrange function

L=In W+/102ni+/11 Zniei (30)

where the second and third terms on the right come from the two
constraints above, and A and A, are called Lagrange multipliers.
If we now maximise L with respect to (nq,n;, ...), we would get the
most likely distribution under the given constraints. First we
differentiate and set the derivative to zero:

oL

a—mZ—lﬂni—i—lo—l-i]é‘i:O (31)

Fig. 3. The phase space is divided into a grid of tiny squares. Each line labelled t
that goes through square i is a ray that is parallel to the t-axis of projection angle k.
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Then we solve for n;:
n = ehogh€i (32)

When A, is replaced with —1/kgT using thermodynamic reason-
ing, we get the familiar Boltzmann distribution.

To apply this to MENT, we replace energy levels with the tiny
squares in phase space. The formula for the number of arrange-
ments W is the same. The constraint on the number of particles N
is also the same. The constraint on total energy is now replaced by
the constraints that the projections for the distribution must agree
with the measured ones:

Pi(Sk) = [an (33)

The left side of this equation is the projection value for the angle k
and coordinate s;. The subscript t; of the summation on the right
side means that only those tiny squares on the ray at angle k and
coordinate s, are included in the sum. The ray indicated by ¢ is
illustrated in Fig. 3. The length of a ray in one square is different
from its length in another square. The size of each square is
assumed to be very small so that the sum over t, approaches an
integral.
The Lagrange function is then given by

L=In W+ A X0+ X3 (s Xn; G4
k Sk ty

s is assumed to be discrete with very small steps so that the sum
over sy approaches an integral. In Ref. [ 19], the integral signs would
be used for both the sums over s and t,. We retain the summation
signs to simplify the next step.

To maximise L, we differentiate with respect to n;:
oL
—=0=—Inn;+4do+ XA(s1) (35)
an; K
To understand the sum on the right, observe that all n variables
should vanish except n; because the differentiation is with respect
to n;. Recall that n; is the population of particles at a particular tiny
square. The multipliers A,(s;) that remain must correspond to
those rays that pass through the centre of this particular square, as
illustrated in Fig. 3. The number of rays is just the number of
projections. s, would be the coordinate of the square's centre for
each projection. With this understanding, we now rearrange to get

K

ni:e}»o II (s (36)
k=1

where K is the number of measured projections. This can be

rewritten as

fx.x)= Hhk(sk) (37)

where we have defined
hy(si) = e+ 0 /K (38)

We have equated the number density function f(x,x’) to the
population n;. This is correct up to a constant factor.

The key result is that the number density f(x,, X)) of particles in
phase space at the reconstruction location A can be expressed as a
product of certain functions. Each of these functions has only one
variable, and this variable is the distance along each projection
direction s (see Fig. 1). This relation can be written as

K
fxa,xy) = 11:11 hi(si(xa, X)) (39)

Recall the constraint that f(x,,x,) must give the correct
projection that has been measured for each projection. The kth

projection is related to f(xa,x}) by
PuGso = [ foxuxy diy 40)

where ty is the axis perpendicular to the si-axis, and the integral is
over the range of ;, where f(x4.x)) is nonzero. The coordinates
(xa,X),) are determined for each value of s, given on the left of the
equation and each value of t, defined during the integration. This
means that if f(xs, x)) is known, then when we integrate it along
the ti-direction for a given s, value, the answer must be equal to
the value of the projection at s;.

Eqgs. (39) and (40) fully define the mathematical problem and
the distribution f(x4.x)) can in principle be solved.

Using Egs. (39) and (40), we can now solve for the distribution
f(xa,x},). By substituting Eq. (39) into Eq. (40), we get

K
s =huts) [ dri T G50 53) (1)
K #K

where hy(sy) is factored out. This is possible because s, and t; are
the coordinates of the kth projection p,(sy), so s, does not change
when ty is varied in the integral. Eq. (41) makes it possible to solve
for the unknown h(s;) using a technique known as Gauss-Seidel
iteration:

1. Rearrange Eq. (41) for iteration:

JdtTe « khielse (xa, x)]
where hy(sy) is the result for h(sy) after i iterations.

2. Use initial values of hg(sk) =1.

3. Use Egs. (39) and (40) to calculate the projections for from the
ith iteration:

i (s1) =

. K .
pl(s) = / dty IT s (6 01 43)
=1

4. Calculate the differences between p;<(s,<) and the measured
Di(sy) for all .

5. Repeat the iteration until this difference is small enough for all
sk. (For the calculations in this paper, we stop when the
difference at each pixel (x4,x)) is less than a tolerance level of
1% of the peak value of f(x,,x}).)

The computed projections may not always converge to the
measured projections. We have found that if the projections are
too noisy or if they remain non-zero up to the limits of the domain
of s,, the method fails. For the projections used in this paper,
convergence is usually achieved after three or four iterations.

3. Normalised phase space
3.1. Equal phase advances

As far as we can trace in the literature, the idea of using equal
phase advances in phase space tomography may have originated
from a simulation study on emittance measurement for the Tesla
Test Facility [21]. This empirical study shows that when four
screens at 45° phase advances in a FODO lattice are used, the
emittance computed using images from the four screens has the
smallest error.

The Tesla Test Facility design described in Ref. [21] consists of
two diagnostic sections at two different locations. Both are
intended for measuring emittance, not phase space tomography.
Each section consists of four screens. Between each pair of
adjacent screens is a FODO cell. The three FODO cells form a short
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periodic structure. The intention is to measure the beamwidths at
the four screens. Together with the transfer matrices of the FODO
cells, the emittance can then be calculated [21].

In this study, the strengths of the FODO cells are optimised to
reduce the errors of measurement. The following procedure is
adopted:

1. The FODO structure is assumed to be infinitely periodic. So the
beta functions are determined by the periodicity condition.

2. The phase advances are then computed. These would be equal
between adjacent screens since the structure is periodic.

3. In the actual beamline, the FODO structure is not infinitely
periodic. So the actual magnets along the beamline must be
adjusted to match the beam to the FODO structure before a
measurement.

A simulation is then carried out in Ref. [21] to determine the
performance. This simulation determines how the error in mea-
sured emittance would vary with error in beam size measurement
at each screen. A random error is added to the beam sizes and the
emittance calculated. This is repeated for 1000 times and the RMS
emittance error is determined. This is then repeated for a number
of phase advances. The result shows that the RMS emittance error
is smallest when phase advance between adjacent screens is 45°.

This result has provided the justification for the design of the
PITZ tomography section [15]. This has a similar design as the
diagnostic section in the Tesla Test Facility, with four screens and a
FODO cell in between each pair of adjacent screens. This FODO
structure is also designed to give 45° in between screens. This
design was developed by a collaboration between PITZ and Dares-
bury. It has subsequently influenced the design of the ALICE
tomography section.

The ALICE section has three screens and a FODO cell in between
adjacent screens. This is perhaps the first active use of the idea of
equal phase advances for phase space tomography. Whereas the
PITZ choice of 45° phase advance is empirically justified by
emittance studies, no such study has been carried out for ALICE.
The choice of 60° phase advance for the ALICE tomography section
comes from dividing 180° by 3. The value of 180 degrees comes
from the full angular range for tomographic projections. The result
in Ref. [21] that 45° phase advance is optimal is associated
conceptually with tomographic projection angles: 45° is 180°
divided by 4, the number of screens. So at ALICE, 180° divided by
3 because there are three screens. There is thus a conceptual leap
from empirical emittance study to phase space tomography.

Fig. 4(b) shows a schematic diagram of the two FODO cells at
the ALICE tomography section and the beta functions computed
using MADS8 under the assumption that the FODO cells are
periodic [13]. Fig. 4(a) shows the lattice of ALICE magnets before
the tomography section and the beta functions of this lattice that
are matched to the periodic beta functions at the entrance of the
tomography section.

At the time of the construction of ALICE, there has been no
further elaboration on this, whether it is emittance study or
theoretical analysis. This comes later when we show in Ref. [16]
that phase advance is equal to a projection angle interval in
normalised phase space.

3.2. Normalised phase space

In this section, we shall review the steps in Ref. [16] to show
that phase advance is equal to the projection angle interval in
normalised phase space.

Recall that phase advance corresponds to rotation angles in the
normalised phase space. We assume that there is no coupling
between vertical and horizontal motion between reconstruction

(a)
1 1
L] L]

alice2emma bm & st
Windows NT 4.0 version 8.23dl

26/05/08 19.43.00

1.2 1 g X
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s (m)
Fig. 4. (a) Beta functions at the ALICE tomography section, assuming that the FODO

lattice is periodic. (b) Beta functions along the beamline are matched into the
entrance of tomography section.

location and measurement point (e.g. screen). This would be true if
we only use quadrupoles and drift spaces. Then the horizontal,
transverse normalised phase space at the reconstruction location
is defined by the following transformation:

% 0

X B X

() |y v () “
N \/B A

Xy and xy are the corresponding co-ordinates in the normalised

phase space, and a and f are the Twiss parameters. The Twiss

parameters are determined by the second moments of the beam
distribution:

(x®) = pe (45)
xxX)= —ae (46)
®*=rye (47)

€=V (XI)X2) —(xx')? (48)

A similar transformation to Eq. (44) applies to the vertical
displacement y. Reconstruction in normalised phase space can be
done with a simple extension of the method given in Section 2.2.
A matrix transforms the initial distribution at the reconstruction
location to the distribution at the screen. Based on this matrix, the
procedure in Section 2.2 reconstructs the initial distribution.

The initial distribution may be considered the result of the
transformation of the distribution in normalised phase space
to real phase space. The transformation is given by the inverse of
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Eq. (44). In order to reconstruct in normalised phase space, we
only need to replace the matrix in Eq. (17), by a matrix that
transforms the distribution all the way from the normalised phase
space to the distribution at the screen. This matrix is simply a
product of the matrix in Eq. (17), and the matrix that transforms
from normalised to real phase space. The latter matrix may be
obtained by inverting Eq. (44) as follows:

(XA ) ﬁA O (XN >
/ = _ O 1 / (49)
Xa Vi )\

where the subscript A means that the Twiss parameters refer to
position A. The matrix on the right hand side is the required
matrix. Inserting this into the right hand side of Eq. (17) gives the
new transfer matrix M needed for the reconstruction in normal-
ised phase space:

~ M]] M]z \/ﬂA 0
M= __ap 1 (50)
M3 Mp; N/ /A

We now demonstrate that the projection angle € in the
normalised phase space is equal to the phase advance . This
can be done using the relation between the transfer matrix and
the Twiss parameters at positions A and B:

M1 Myz
M1 My

g—i( COS {+ay Sin u)

VBpBa sin u

1+ agay ﬁ’_/;( cos p—ag sin u)

PsPa

ap—ap

~PPa

sin u

COS p—
(31)

where the subscript B means that the Twiss parameters refer to
position B. This can also be written as

My My, VPg 0 cos u sinp
My Mx ) *5;73 ﬁ —sinpu cos u
1 0
N
| VB, (52)
N A

We can understand the right hand side in a simple way: the
distribution at A (reconstruction location) is transformed to
normalised phase space, propagated to B (screen) by a rigid
rotation through angle y, and transformed back to real phase

(C)
10

x’ (mrad)

-10
-10

x (mm)

space. Substituting this into Eq. (50), we find

. VPg 0 cos y sin p
M= _\(/12—3 j% —sin u ©3)

7
We can now apply Eq. (19) to this matrix to find €. Note that the

original transfer matrix R in Eq. (17) has been changed to M
defined in Eq. (50). So My; and My, in Eq. (19) must also be
replaced by the elements in the first row of Eq. (50). These are
equal to those in the first row of Eq. (53), which are /f; cos u
and /fy sin p. Substituting these into Eq. (19) for My, and My,
respectively, we find

tan 0 = tan u. (54)

So u is indeed the projection angle.

At this stage, we emphasise that the significant result is that if
the tomographic reconstruction is performed without a normal-
ising transformation, then the projection angles need to be
calculated from the transfer matrices: they are not simply the
phase advances. This is significant for tomography at PITZ and
ALICE, which are designed with uniform betatron phase advance
between successive screens [12,22,23], i.e. uniform distribution of
projection angles in normalised phase space. The distribution of
angles in real phase space will not necessarily be uniform. This
would have a direct impact on the reconstruction.

To illustrate this point, consider the corresponding rays in real
and normalised phase spaces shown in Fig. 5. (The projection
direction is perpendicular to the ray.) Fig. 5(a) shows a Gaussian
distribution in real phase space, with rays that are at uniform
angular intervals. In normalised phase space, some of the intervals
become smaller, whereas others become larger, as shown in
Fig. 5(b). Fig. 6 illustrates the effect of the opposite transformation
- starting with uniform intervals of angles in normalised phase
space, shown in Fig. 6(a). This results in a nonuniform distribution
of rays in real phase space, shown in Fig. 6(b). These observations
have direct impact on the reconstruction. The actual effect
depends on whether FBP or MENT is used.

Beam distributions are often more complex than simple Gaus-
sians. We consider a more complex hypothetical case where the
distribution is made up of a group of closely spaced Gaussian
spots, as shown in Fig. 7(a). This provides a test of the ability of a
reconstruction method to resolve the spots. Note that each spot
has a circular distribution in normalised phase space. Assume a
hypothetical system of 18 screens separated only by drift spaces.
The projection angle corresponding to each screen can be chosen
by adjusting the length of the drift space using Eq. (19). Start
with the case of equal angular intervals in real phase space. The

(b)
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Fig. 5. (a) Real phase space with rays at uniform angular intervals. (b) Normalised phase space.
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Fig. 6. (a) Normalised phase space with rays at uniform angular intervals. (b) Real phase space.

Fig. 7. (a) Distribution in real phase space. (b) Reconstruction in real phase space.
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Fig. 8. (a) Distribution in normalised phase space. (b) Reconstruction in normalised phase space.

projections from the screens are used to reconstruct Fig. 7(a). The
result is shown in Fig. 7(b). The spots are all reproduced and at the
correct positions. However the resolution is less clear.

We then look at the case of equal angular intervals in normal-
ised phase space. When Fig. 7(a) is transformed to normalised
phase space, the distribution is as shown in Fig. 8(a). Note that the
screens would now be at different positions from the previous
case. When we use the projections from these screens to recon-
struct the distribution in normalised phase space, we get Fig. 8(b).
This time, the spots are clearly reproduced. The obvious step to

transform the co-ordinates to real phase space gives Fig. 9. This is
much clearer than Fig. 7(b). Apart from the faint artefacts, the
spots look almost the same as the original Fig. 7(a).

One way to transform from Fig. 8(b) to Fig. 9 is to make a
square grid of pixel positions for Fig. 9, compute the corresponding
positions in Fig. 8(b) using Eq. (44), then interpolate using the
reconstructed Fig. 8(b). But there is a more direct way in which we
can avoid the interpolation error. Recall that a reconstruction is com-
puted using Eq. (16). Instead of using this to compute Fig. 8(b) first,
we can use this to compute the distribution at coordinates in



46 K.M. Hock et al. / Nuclear Instruments and Methods in Physics Research A 753 (2014) 38-55

/

x’ (mrad)

-10 0 10
x (mm)

Fig. 9. Distribution obtained by transforming the co-ordinates in the reconstruc-
tion in normalised phase space to the real phase space.

normalised phase space that correspond to the square grid in
Fig. 9. In this way, Fig. 9 can be obtained directly from the
projections.

We should mention that to use this method for a quadrupole
scan, the Twiss parameters at the reconstruction location must be
measured first. This can be done using a standard method, e.g. as
described in Ref. [24] or [21]. From experience, we find that the
method is quite robust. For the method to provide some benefit in
reconstruction and the applications described in the following
sections, an estimate of the Twiss parameters is often sufficient.

4. Measurement and simulation
4.1. ALICE tomography section

In this section we describe the experimental setup at the
tomography diagnostic section in the ALICE-to-EMMA injection
line that we use for our measurements.

The full-energy electron beam in ALICE is typically varied
between 10 MeV (for injection into EMMA) and 27 MeV (for FEL
operation). In our experiments, we have only used 12 MeV. The
tomography section consists of three YAG screens, with two
quadrupoles in between each adjacent pair of screens, as shown
in Fig. 10. The three screens are labelled 1-3. The electron beam
travels in the direction from screen 1 to screen 3. The distance
from screen 1 to screen 3 is 1.5 m. The quadrupoles of interest are
labelled 7-11. The length—between the entrance and exit planes—
of each of these quadrupoles is 50 mm. The quadrupole scans for
our experiments are carried out using quadrupoles 7 and 10. We
shall refer to these as QUAD-07 and QUAD-10 respectively. The
other quadrupoles are all fixed at a current of 1.05A during
the scan.

Many factors influence the measurements. Fig. 11 shows an
image, taken by a camera (Pacific Board Cameras PC-375 Mono,
752 x 582 pixels, 8 bit) focussed on screen 1 in Fig. 10, of a single
bunch of charge of 20 pC. The size and the shape of this image can
be adjusted by changing the strength of QUAD-07, as well as all the
other quadrupoles upstream of it. This is the feature that is used in
a quadrupole scan. The size and the shape of the image are also
affected by day-to-day variation in the setup of ALICE, as well as
shorter-term instabilities. This can lead to variation of the image
from bunch to bunch. A quadrupole scan or a tomographic
reconstruction makes use of a set of images, each taken at a
slightly different time. The resulting emittance, Twiss parameters
or reconstructed phase space derived from these images must

reconstruction
location 4

Fig. 10. ALICE tomography section: the tomography diagnostic section of the
ALICE-to-EMMA injection line.
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Fig. 11. The image of the beam on screen 1. The ratio of distance on the screen to
pixel size in the image is 0.0818 mm/pixel.

therefore include some averaging of the bunch-to-bunch varia-
tions. Other variables include the response of the YAG screen and
the response of the camera. We assume that the intensity recorded
by the camera image is directly proportional to the number of
electrons falling on each pixel.

For tomographic measurements, the transfer functions of the
quadrupoles must be known accurately. This requires knowledge
of the magnetic field gradient in each quadrupole. We rely on field
gradient versus current measurements provided by the manufac-
turer. Note that there is hysteresis in the quadrupole magnets;
thus the field gradient can be slightly different, depending on the
previous level of excitation. The hysteresis curve provided by the
manufacturer shows that at one ampere current, the maximum
error in the field is 7%. This error remains constant up to about 5 A,
and is thus a potential source of measurement error.

The bunch charge used is in the range 20-80 pC, and the bunch
repetition rate is a few hertz. We assume that when each bunch of
electrons is incident on the screen, it produces luminescence
proportional to the flux of electrons arriving at each point on the
screen. The camera viewing the screen captures 50 images
per second, but is not synchronised with the arrival of the
electrons at the screen. During the analysis of the data we find a
shot-to-shot variation in the brightness of 10-20%.

Although the ALICE tomography section was originally designed
for tomographic measurements using three screens simultaneously,
in practice it is time consuming to set up equal phase advances
between screens. For this work, we have chosen to undertake
the much quicker quadrupole scan method. The variation of
quadrupole magnet currents and the capture of the corresponding
camera images of the screens have been automated using software
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developed in-house. In a typical measurement, the strength of
QUAD-07 is varied and the beam images on screen 1 are captured.
The quadrupole field gradients are chosen to correspond to the
required projection angles calculated using Eq. (19). The equa-
tion for the transfer map from the entrance of QUAD-07 to screen
1 is Eq. (14). The form of this function limits the angle range to
about 160°. Typically, we record images at 1° intervals, so 160
images would be collected.

Fig. 12(a) shows examples of projections obtained directly from
the images. We call these the raw projections. Before undertaking
the quadrupole scan measurements, a dipole magnet before the
quadrupole is adjusted to centre the beam on the screen, so that
most of the projection peaks are at roughly the same position. The
strength of the quadrupole which we intend to use for the measure-
ments is then varied to check if the beam is also central in the
magnet. If the beam is on the magnetic axis of the quadrupole, it will
experience no force and the beam spot on the screen will not move.
If the beam spot moves, we adjust beam steering upstream of the
quadrupole magnet and check again. Notice for each projection that
as we move away from its peak, the projection reaches a roughly
constant, non-zero value. The background when there is no beam has
also been measured and found to be close to the background when
the beam is present. This background must be subtracted.

It is important to check the integrated area of each projection.
Fig. 12(b) is an example of the integrated areas calculated for a
quadrupole scan. Note that the projection number corresponds to
the projection angles in Fig. 14, which are taken at uniform
intervals. As can be seen in the figure, some of the projection
areas are much smaller than the typical value. This happens when
the beam becomes defocussed, but why this happens is not
understood at present. Including such projections could lead to
errors, so they are omitted. This usually corresponds to the first
and last few images for each of our quadrupole scan data sets.
In the analyses following this section, the first and last 10
projections are omitted, as indicated by the two vertical lines in
Fig. 12(b). The trend in the area suggests that the bunch charge
might have changed during the quadrupole scan.

4.2. FBP in practice

In this section, we explain the main steps involved in proces-
sing measured projections. We also describe simulation tools we
have used to validate reconstruction codes.

4.2.1. Centre of reconstruction

In measured projections, there is a key information that is
missing for the reconstruction. It is the origin. In the derivation of
the Filtered Back Projection technique, notice that each projection

(a)

Projections

ob— e
0 100 200 300 400 500 600
Pixel number

has an origin. Consider what happens if the origin of one projec-
tion is in error. Then during reconstruction, one of the back
projections would be shifted. When this is added to other back
projections, the result would clearly be erroneous. Unfortunately,
in measured projections, we do not know where the origin of each
projection is. This is not an issue that is normally discussed in
papers on phase space tomography. Here, we describe our solu-
tion. We shall prove that if we take the centroid of each projection
to be its origin, the resulting reconstruction would be identical to
the actual distribution.

To show that using the centroid of each projection gives the
correct reconstruction, consider a hypothetical distribution f(x, X"
in phase space. Its centroid position is given by

Xe = //xf(x, X') dx dx’ (55)

X.= //x’f(x,x’) dx dx’

Suppose that the centroid is not at the origin. So the centroid of
the projection Py(s) is also not at its origin s=0. Suppose that it is
at s.. From Fig. 13, this is given by

(56)

Sc =X €os B+x, sin 6 (57)

Suppose that we use this as the origin for reconstruction. The
centroid can be determined directly from a measured projection
using the centroid formula

centroid (. , X'¢)
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Fig. 12. (a) Raw projections from the images of the QUAD-10 scan for 80 pC bunch charge. The horizontal line through the noise floor will be used as the new zero.
(b) Integrated projection areas corresponding to the projection angles in Fig. 14. The dashed red lines mark the region outside of which the data is also excluded because
integrated areas are well below the average. (The vertical axes of both graphs are in arbitrary units.) (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this paper.)
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Se= / SPy(s) ds (58)
This would return the same value using any arbitrary point as s=0.
Taking s. as the origin of a projection, the new projection is

Py(s) = Py(s —5c) (59)

If we now put this through the FBP equations, we first obtain the
Fourier transform of Pj(s). From the property of Fourier transforms
or from Eq. (3):

Sp(w) = e~ 2T Sy(w) (60)
From Eq. (8), we can write this as

Sp(w) =F'(w, ) = e~ 2™ F(w, 0) (61)
Substituting into Eq. (9) gives

Fx,x)= / / F'(u, v)e* W+ qy dy (62)
f/(X,X/) — / / e—ierwscF(u’ v)ei27r(ux+vx’) du dv (63)

Substituting Egs. (57) and (6) gives
f/(X,X/) — /oo /oo e—iZn(uxﬁrvx’r)F(u’ V)eiZn(ux+vx’) du dv (64)

Finally, comparing with Eq. (9) gives
&) =f(x—xc,x —x)) (65)

This completes the proof that the distribution reconstructed using
the projection centroids as origins is identical to the actual
distribution f(x,x’), up to a rigid translation.

4.2.2. Nonuniform angle intervals
In the usual implementation of FBP, Eq. (16) is discretised as

K
f(x,x’):% Y Qg (x cos Ox+x' sin 6y) (66)
k=1

where Eq. (1) is used to express s in terms of x and x'. The angle
interval given by z/K is assumed to be uniform. This is usually
valid, for example in X-ray Computer Aided Tomography scan in
which rotation angles can be precisely controlled.

In phase space tomography, it is convenient to allow the angle
intervals to be different. The main reason is that the angle is varied
by changing the strengths of optical elements. This variation need
not be linear. In the case of a quadrupole with a drift space for
example, the variation can be steep for some values of the qua-
drupole strength, and gentle for others. An analytic formula for
projection angle in terms of quadrupole current is available. In
principal, it should be possible to develop a numerical code to
compute precise values of currents required for uniform angles. In
practice, we obtain the currents from tabulated values of currents
and angles using linear interpolation. To check the accuracy of the
currents obtained in this way, the analytic formula is used to
compute the corresponding angles. The results show that this
procedure is prone to numerical errors. We may find that the
actual intervals are not exactly uniform. We can then correct for
this by simply using the actual angle intervals in the back
projection equation. So Eq. (66) should be written as

K
fx.x)= % Qg (x cos Ox+x sin 6, )A0, (67)
k=1

where A@, is the actual angle interval.

Two other (hopefully) less common situations where this
would be useful are when there is a systematic error in the
quadrupole current or an error in beam energy at the stage of
determining the required currents. Suppose that these errors are

discovered after the measurements. Because the projection angle
does not vary linearly with current or energy, the resulting
reconstruction could be completely wrong. One option would be
to redo the experiment. But there is another option. We can
recompute the angles using the corrected currents and energy.
The new angle intervals can then be used in Eq. (67) and the
correct distribution computed.

4.2.3. Hypothetical Gaussian distribution

It is useful to verify the reconstruction procedure using a
hypothetical distribution with known projections. Reconstructing
using these projections must obviously return the original dis-
tribution. If it does not, then we know that there is an error in
the code.

In tomography, in general, it is common to use a distribution
made up of ellipses of different shapes, sizes and brightness.
An example is the Shepp Logan phantom which consists of ellipses
arranged to look like organs in a cross-section of a human body.
There are simple formulae to compute the projections of the
combination of ellipses [18]. In phase space tomography, these
ellipses with sharp edges do not look realistic. Instead, it is better
to use Gaussian distributions. Fortunately, we can also derive
analytic formulae for the projections of a Gaussian distribution.
We would like to be able to describe the distribution using Twiss
parameters and compute the projection for a given transfer
matrix. We list here the formulae that we have derived and used
for the simulations shown in later sections.

Suppose that we need a Gaussian distribution at reconstruction
location A with emittance €, beta function f and alpha function a.
The Gaussian distribution is given by

, XL X2
f(xA,xA)=exp<— Na2 ”) (68)
0
where
ag=+/€ (69)
and

1
(XN > ﬂ O (XA ) (70)
xy )T | < \x )
N /i VB A
This is just the transformation to a normalised phase space.
Suppose that it is mapped to the screen at location B where the

horizontal projection is measured. Suppose that the mapping is
given by matrix Ry. Then the distribution at B is

, X2+ X2
f(xB,xB)=exp<— NCl2 ”> (71)
0

where

XB XA
x| =Rl x ) (72)

The projection along the xp-axis is given by

pow = [ fowxp) d (73)
Doing the integration gives

Ax?
p(xp) = apvVAm exp —a—zs (74)

0

where
A= (a®+c*)—Be? (75)
e=(ab+cd)/B (76)
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B=b*+d? (77)
a b
(C d>=N1R0‘1 (78)

and N, is the matrix in Eq. (70).

5. Space charge search
5.1. Space charge measurement procedure

There is some simulation work on the effect of different bunch
charges on the beam in ALICE [22,25,26]. These publications
suggest that at 80 pC bunch charge, changes in lattice functions
and beamwidths become noticeable. If the space charge effect is
significant, it would have an impact on our tomographic recon-
struction [4]. In order to determine if the space charge effect is
significant, we design an experiment as follows.

A quadrupole scan is not by itself able to detect the space
charge effect. We propose to do it using two quadrupole scans that
are separated by a distance that is much larger than the distance
within a single scan. Our beam is likely to have a small space
charge effect, if any. For each quadrupole scan, the distance
between quadrupole and screen is small. Any space charge effect
would be small, so errors also need to be small if any effect is to be
observed. We then do two quadrupole scans at different positions.
As the distance between the two scans is much larger than the
distance within each scan, the space charge effect would also be
much larger. It is by comparing the two scans that we hope to
detect the space charge effect.

Quadrupole scans are carried out at screens 1 and 3, as shown
in Fig. 10. These two screens are separated by 1.5 m. Using the
beam images from either screen, the emittance could be obtained
as described before. If the space charge effect is significant, the
results from the two screens would be different. If there is indeed
no space charge effect at all, the phase space reconstructed from
the two scans should also be the same.

In order to obtain reasonable reconstructions, the parameters
used in each quadrupole scan have to be selected to give a range of
projection angles as close as possible to the full 180°. The reason is
that the reconstruction can in theory be expressed as an integral of
the filtered back projections over 180° [18]. A reduced range would
in effect be a truncation in angles. For direct comparison, we also
require that, for both scans, the reconstruction be carried out at
the same location.

The closest quadrupole in front of screen 1 is QUAD-07. We
need to determine if this quadrupole could provide a sufficient
range in projection angles for the scan on screen 1. We choose as
the common reconstruction location for both scans the entrance
plane to QUAD-07. This same quadrupole would be used for the
scan on screen 1. Between this location and screen 3, there are
altogether five quadrupoles. We need to decide which one to
choose for the scan on screen 3.

QUAD-07 is a horizontally focussing quadrupole. The region
between the reconstruction location and screen 1 is made up of
QUAD-07 followed by a drift space. Using the hard-edge model for
the quadrupole, we can write down the transfer matrix from the
reconstruction location to screen 1:

cos (wl)

o (1 o 79
_<0 1) — sin(wl) (79)

sin (a)L)/a))

cos (wl)

where L is the quadrupole length, L is the drift distance, and @? is
the normalised quadrupole field gradient

w? =k =2 (80)

Here, e is the electron charge, 0B, /ox is the magnetic field gradient
and Py is the electron momentum. The magnetic field gradient has
been measured as a function of current I by the manufacturer, and
has the form

0By
W_mI+d. (81)

In the case of QUAD-07, for example, m=15900 T/m A, and
d=0.0001 T/m. These values are obtained by fitting a straight line
to the numerical data provided by the manufacturer.

Using these equations, the projection angle @ can then be
computed for each current using Eq. (19). A graph of the angle
against current is plotted in Fig. 14. From this graph, the range of
angles can be obtained.

We have seen that the QUAD-07 scan for screen 1 gives a fairly
wide range of angles, from about 20° to 170°, which should be
sufficient for our purpose.

We turn now to the scan for screen 3. In order to have a good,
well focussed beam on the screen, all of the quadrupoles from
QUAD-07 to QUAD-11 must be on. One of these must then be
selected. Only QUAD-10 has a stable range that is close to 180°. The
range at 12 MeV is plotted in Fig. 14. There is a very steep slope
that covers a large part of the range of angles, for a small interval
of currents. This suggests that a small error in current could lead to
a large error in angle.

5.2. Tomographic reconstructions

The reconstructions for the QUAD-07 and QUAD-10 scans are
shown in Fig. 15 for two bunch charges, 20 pC and 80 pC.
As explained in Section 5.1, the experiment is designed in such a
way as to give nominally identical reconstructions for both scans,
at the entrance face to QUAD-07—when there is no space charge
effect. Fig. 15(a) looks different from Fig. 15(b), and (c) looks
different from Fig. 15(d). If the space charge has a linear effect, this
could happen. For instance, if the space charge defocuses the beam
in the same way as a defocussing quadrupole (except that the
defocussing occurs both horizontally and vertically at the same
time), this would be a linear effect. Errors in quadrupole gradi-
ents and bunch to bunch variations are also possible causes.
It is straightforward to estimate the effects of quadrupole gradient
errors, which we now do. The estimation could be viewed as a
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Fig. 14. Projection angles versus QUAD-07 and QUAD-10 currents at 12 MeV.
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Fig. 15. Reconstruction at the entrance face of QUAD-07 with bunch charges of: 20 pC for (a) QUAD-07 and (b) QUAD-10 scans; 80 pC for (c) QUAD-07 and (d) QUAD-

10 scans.

result of the linear defocussing effect of space charge, or the
gradient errors, or a combination of both.

An error in the field gradient of the quadrupole could come
from an error in the current setting, or an error in the calibration
in Eq. (81). For our purpose, we shall combine the two effects into
a current error. An error in the current would lead to an error in
the transfer matrix, such as Eq. (79) for the QUAD-07 scan. The
result would be a reconstructed distribution that looks different
from the actual one. However, the two distributions would be
related by a linear transfer matrix. Assuming that the current error
is the cause, if we transform both reconstructions of the QUAD-07
and QUAD-10 scans to normalised phase space, the resulting
distribution should look the same, differing by a simple rotation
at most. The procedure for doing so is described in Ref. [16].
It requires an estimate of the Twiss parameters, which are obtained
in the next section. The resulting normalised phase space distribu-
tions are shown in Fig. 16. We first summarise the procedure.

The implementation of the Filtered Back Projection technique
normally assumes that the intervals of angles are uniform [18].
In Eq. (67), we have given a formula that is suitable for nonuniform
intervals of angles. This would be useful later, when we consider
the effect of an error in the quadrupole current.

To reconstruct in normalised phase space, we first define a
rectangular grid of the co-ordinates (xy,xy), calculate the corre-
sponding co-ordinates in real space using:

()-(%5 ) ()

where a and /3 are the Twiss parameters, then reconstruct using
Eq. (67).

The structures in the phase space distributions are more clearly
visible in the normalised phase space in Fig. 16 than in the real

phase space in Fig. 15. The structures in Fig. 16(a) and (b) look
similar, except that 16(b) looks stretched. This could be due to
errors in the measured Twiss parameters. Next, look at Fig. 16(c)
and (d). Both reveal similar, heart-shaped distributions, with one
rotated with respect to the other by about 22°.

Reasons for this rotation may include the effect of space charge
and fringe fields. To estimate their effects, consider the variation of
phase advance with currents in Fig. 14. Most of the phase advances
lie within a range of QUAD-07 and QUAD-10 currents between
1 and 2 A. Clearly, a small change in quadrupole strength would
give a large change in phase advance in this range of currents.
Since both the effect of space charge and fringe fields are likely to
have defocussing or focussing effects like the quadrupoles, their
effects are also likely to be larger. We shall therefore start with an
estimate of the space charge and fringe field effects by choosing
the strength of QUAD-07 and QUAD-10 within this range of
current, say 1.5 A.

For the space charge, we carry out a space charge simulation
using V-CODE [28], a Vlasov solver which includes a linear model
for the space-charge effect. In the simulation, we compute the
phase advance from reconstruction location to screen 1 with and
without a linear space-charge effect [30]. The difference of 2.3°
gives a rotation by that angle in normalised phase space due to
the linear space-charge effect for the QUAD-07 scan. We then
compute the corresponding difference to screen 3 and found a 9.6°
rotation for the QUAD-10 scan. The relative rotation is then
9.6°—2.3°=7.3°. Thus, of the 22° rotation observed between
Fig. 16(c) and (d), 7.3° may be attributed to the linear space-
charge effect.

Next, we simulate the effect of fringe fields computed by the
OPERA simulation software [29]. We divide each quadrupole into
thin slices of quadrupoles with gradients that follow the fringe
field profile. Following the same procedure as with the space



K.M. Hock et al. / Nuclear Instruments and Methods in Physics Research A 753 (2014) 38-55 51

X (103 m'/2)

(b)

& 0.5
c :
?
o
..Z 0
x
-0.5
-3 0 3
xy (103 m'2)
1
0.5
0
-0.5

-3 0 3

XN (10-3 m1/2)

Fig. 16. Normalised phase space at the entrance face of QUAD-07 with bunch charges: 20 pC for (a) QUAD-07 and (b) QUAD-10 scans; 80 pC for (c¢) QUAD-07 and (d) QUAD-

10 scans.

charge simulation above, we compute the phase advances to
screen 1 with and without fringe field. The difference of 1.8° is
the rotation in normalised phase space due to fringe fields for the
QUAD-07 scan. We then compute the corresponding difference to
screen 3 and found a 9.5° rotation for the QUAD-10 scan. The
relative rotation is then 9.5°—1.8°=7.7°.

The effect of space charge and fringe field together gives
7.3°+7.7°=15°. This accounts for about 70% of the 22° rotation obser-
ved between Fig. 16(c) and (d). There could be other sources of errors,
such as the nonlinearity of the space-charge effect, magnet current
setting errors, a more complex relationship between magnet current
and field gradient than we have assumed, and magnet hysteresis, as
well as bunch to bunch variation. We can eliminate the fringe field
effect simply by using it to create transfer matrices for tomographic
reconstruction. Then space charge would become the main contribu-
tion to the rotation. So at higher bunch charges, it would be feasible
to use rotation in normalised phase space as a measure of the effect
of space charge. A more detailed study will hopefully be carried out
in the future.

6. MENT reconstructions

MENT can be used for tomographic reconstructions when the
number of projections is small. At ALICE, PITZ, SNS and PSI, 3-5
projections are used [5]. In contrast, we could for example collect
over 100 projections using quadrupole scans and reconstruct using
FBP. With so few projections in MENT, it is not clear how reliable
the reconstructions are. We review here our study [17] which
shows that the reconstructions are sensitive to the actual projec-
tion angles selected and can be highly distorted, and that by using

equal angle intervals in normalised phase space—i.e. equal phase
advances—distortion can be reduced significantly.

6.1. Distortions

As an example of a more complex distribution, we choose a
hypothetical distribution with a number of Gaussian spots, as shown
in Fig. 17(a). We use this as a test case to compare the results of the
two methods for choosing projection angles. Fig. 17(b) is the result of
reconstructing with five projections at equal angular intervals in real
phase space. The result is very sensitive to the actual directions of the
five angles. The result shown here is the worst case, where the
individual spots are not resolved. The best case shown in Fig. 17(c) is
obtained when the rays are all rotated by half an angle interval, and
actually agrees very well with the original in Fig. 17(a).

We now apply the method of equal phase advances, i.e. we use
equal angles in normalised phase space. The result is shown in
Fig. 17(d). This is much closer to the original than Fig. 17(b), though
not as good as Fig. 17(c). Notice that when equal phase advances
are chosen, the corresponding rays in real phase space are closely
bunched along the length of the distribution. This means more
samples within the angular range of the distribution, where it
really matters. This is clear from the yellow lines in Fig. 17(d).

If the normalised phase space angles in Fig. 17(d) are changed
by half an interval, it would give Fig. 17(e). This is slightly clearer,
though still not as good as Fig. 17(c). So using equal phase
advances give consistently reliable results, whereas using equal
angle intervals in real phase space could give highly distorted
results for some angles.

These simulation results show that we must be careful when
interpreting MENT results because significant distortions are
possible. They also provide a visual explanation for the conclusion
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Fig. 17. (a) Original distribution, with nine spots; (b) reconstructed using five projections at equal angular intervals in real phase space, with yellow lines showing ray
directions; (c) the same, but with projection angles rotated half an interval; (d) reconstructed using five projections at equal phase advances, with yellow lines showing ray
directions; and (e) the same, but with projection angles rotated half an interval in normalised phase space. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this paper.)

that 45° phase advances give minimum emittance error in the four
screen setup in Ref. [21]. It is because the angular distribution is
sampled optimally.

6.2. Re-analysing FBP data

Implementing equal phase advances on a beamline is possi-
ble with some effort. At PITZ, equal phase advances are set up
before measurements [3] by adjusting upstream magnets to match
the beam distribution into the periodic Twiss parameters at the
tomography section. At ALICE, this setup has not been attempted.

For this analysis, we shall obtain these phase advances in a
simple way from measured data. In our previous work at ALICE,
we have reported a comprehensive set of phase space measure-
ments [10]. The projections are obtained with quadrupole scans
and the phase space is reconstructed using FBP. The basic setup
consists of only one screen and one quadrupole. As the strength of

the quadrupole is varied, a camera captures the image on the
screen repeatedly. The procedure is automated by a computer and
each scan of the quadrupole strength can be completed in about
10 min. In a typical measurement, over 100 projections at 1°
intervals are obtained. For this analysis, we simply pick out a
few angles from this set of projections that correspond to equal
phase advances. Then we reconstruct the phase space using MENT.

Instead of having 3-5 screens and a number of quadrupoles, as
is typical in beamlines designed to use MENT, all we need is
1 screen and 1 quadrupole. It may seem redundant to use MENT
for reconstruction if we can reconstruct the phase space using FBP.
However, there are a few good reasons:

1. A single quadrupole cannot give the full range of projection
angles [10], so the FBP result tends to have streaking artefacts.

2. MENT could produce clean results with no artefacts. (Whether
or not it is distorted is a question we seek to answer.)
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3. Using the quadrupole scan to obtain projections needed for
MENT is very quick and requires far less hardware compared to
the standard procedure of using 3-5 screens.

4. Having an alternative method to measure the phase space is
useful because it provides a check for consistency. The MENT
result could be compared with the FBP result.

We select experimental data from the measurement of a beam
at ALICE with 80 pC bunch charge. The measurement setup has
been reported in Ref. [10]. Here, we shall assume that the
projections have been measured. The distribution has been recon-
structed with FBP, as shown in Fig. 18(a).

With the projections from the quadrupole scan, we can
estimate the Twiss parameters using the method in Ref. [24].
With a knowledge of the Twiss parameters, we can then transform
the distribution to normalised phase space, as shown in Fig. 18(b).
To apply MENT, we first try it for the case of projections with equal
angular intervals. We pick out four angles, as shown by the yellow
lines in Fig. 18(a). We must be careful to skip over the gap that is
not covered by the range of projection angles that is possible with
a single quadrupole. The corresponding rays in normalised phase
space are shown by the yellow lines in Fig. 18(b). They are now
bunched into a small range of angles. Applying MENT to these
projections, we get Fig. 18(c). This is clearly broader and appar-
ently distorted when compared with Fig. 18(a). However, we
should reserve judgement at this stage because we know that
Fig. 18(a) is also not perfect.

Next, we apply the method of equal phase advances. We know
from Ref. [16] that this means equal angles in normalised phase
space. So we pick four angles in normalised phase space, as shown
by the yellow lines in Fig. 19(b). Again, we must be careful to
skip over the gap in the angular range. (If the gap is too large,
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fewer projections would be possible and the experiment might
have to be redesigned. This could mean changing the quadrupole's
strength and its distance from the screen to increase the range
of projection angles.) The corresponding angles in real phase
space are shown by yellow lines in Fig. 19(a). Notice that they
are bunched closer to the length of the FBP distribution. The
projections are reconstructed with MENT. The result in Fig. 19(c)
clearly shows better agreement with the FBP result than Fig. 18(c).

This demonstration provides support for the method of
equal phase advance. It also suggests that the quadrupole scan is
a possible setup in which we could use MENT with the method of
equal phase advance.

7. Conclusions

This paper presents an overview of phase space tomography
research at Daresbury Laboratory, which has included the design
of both the PITZ tomography section [12] and the ALICE tomo-
graphy section [13], which was added when the EMMA ns-FFAG
was built to use ALICE as its injector. Advances have also been
made in the processing of the data that was subsequently obtained
from ALICE, to lessen the significance of reconstruction artefacts,
and an investigation of the effect of space charge undertaken.

When the phase space tomography section was designed at the
Tesla Test Facility 2 [21], it was concluded that the error in the
tomographic emittance measurements would be minimised by
using four screens to collect beam data, with a phase advance of
45 ° between screens. Adjacent screens are separated by identical
FODO cells such that the values of the beta functions of the beam
are identical at each screen. For the PITZ tomography section the
same design was employed. Thus the idea that equal phase
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Fig. 18. (a) FBP reconstruction, with yellow lines showing ray directions for equal angular intervals in real phase space; (b) the same distribution and rays, transformed to
normalised phase space; and (c) reconstructed using the four projections with MENT. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this paper.)
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Fig. 19. (a) FBP reconstruction, with yellow lines showing ray directions for equal phase advances; (b) the same distribution and rays, transformed to normalised phase
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advances is optimal for tomographic measurement becomes
accepted.

The idea of equal phase advance is then applied to the design of
the ALICE tomography section [13], except that due to space
constraints, only three screens are used with a phase advance of
60 ° between screens.

Commissioning of both the PITZ tomography section [3] and
the ALICE tomography section [14] start in 2010, with subse-
quent tomographic measurements at PITZ following the planned
procedure with equal phase advances. On ALICE, other demands
on beam time limit what is available to set up the tomography
section with the precision needed for successful measurements
with all three screens and equal phase advances. Instead, qua-
drupole scans are employed in the tomography section to pro-
vide data.

It was then demonstrated that if such quadrupole scan data
was collected at equal projection angle intervals in normalised
phase space [16], the resultant reconstructions are much closer to
the initial distribution, being less prone to artefacts. In normalised
phase space, the distribution is circular on average, and equal
intervals of projection angles are the optimal choice.

To study the feasibility of measuring space-charge effect, we
scanned quadrupoles at two different locations to determine the
phase space at the start of the ALICE tomography section. The
reconstructions were clearly rotated with respect to each other in
normalised phase space. We showed by simulation that the effect
of space charge can account for a significant part of this rotation.
This suggests that rotation in normalised phase space may be a
sensitive measure of the space-charge effect.

The concept of using equal phase advances has been used to
improve resolution in FBP reconstructions [16], detect linear errors
in a beam line [10] and improve the reliability of MENT recon-
structions [17]. We also plan to apply this technique to improve
the resolution and reliability of 4D reconstructions where the

number of projections that can be measured is likely to be limited
by measurement time [27].
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