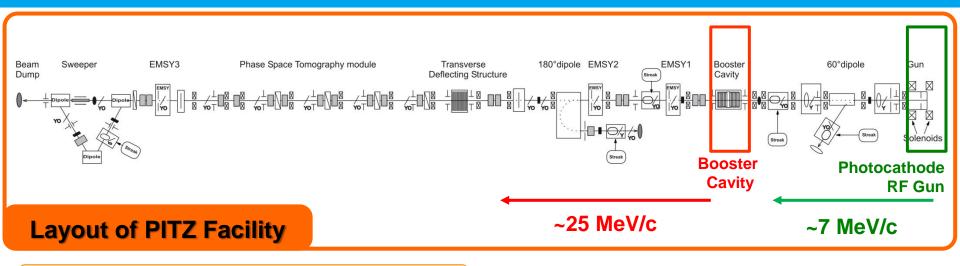
Simulation of Undulator Radiation for the THz Source Project at PITZ

Considerations for the Design of the Undulator

<u>Outline</u>

- > PITZ Facility
- > THz source Project at PITZ
- Considerations for the Design of the Undulator
- > Summary
- > Outlook

Prach Boonpornprasert


DPG Spring Meeting Dresden 03.04.2014

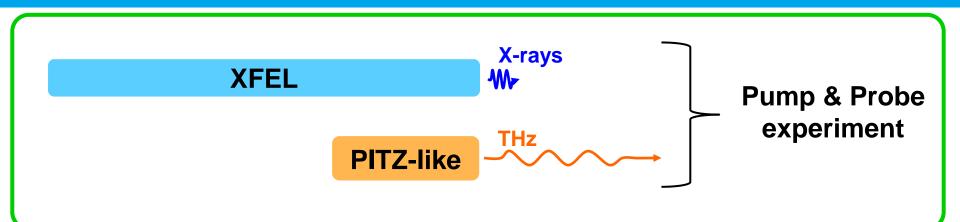
BE12.7

Photo Injector Test Facility at DESY, Location Zeuthen (PITZ)

<u>Goal</u>

Development of a high brightness electron source for linac based FELs

Highlights in 2013 - 2014


- Preparation of RF guns for European XFEL
- Plasma wakefield acceleration experiment
- > 3D-ellipsoidal cathode laser system

Parameter	Value
RF frequency	1.3 GHz
RF repetition rate	10 Hz
Laser \rightarrow Flattop \rightarrow FWHM	~20 ps
e- bunch charge	1 pC – 4 nC
Maximum peak current	~200 A

THz source Project at PITZ

The concept was presented in FEL2012 conference. (*E.A.Schneidmiller, et al., WEPD55*)

PITZ can be considered as a prototype THz source

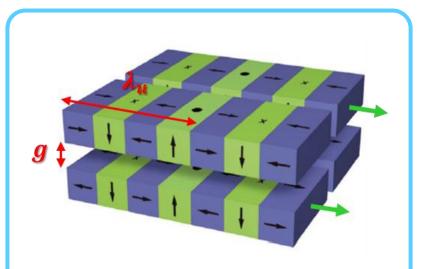
Types of Radiation sources

- SASE FEL
- Coherent Transition Radiation

Works in This Presentation

Considerations for the design of a undulator for goal radiation wavelengths: **5 μm, 20 μm and 100 μm**

- The preliminary simulations for SASE FEL using GENESIS code were done.
- The results are comparable to the benchmark results obtained with FAST code.



Design Consideration: Undulator Type

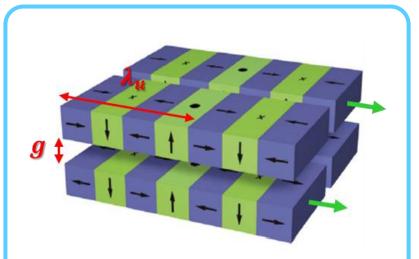
Condition : Variably Polarized Undulator

APPLE-II Type Undulator

- Advanced Planar Polarized Light Emitter APPLE
- The undulator is made of pure permanent magnets which are arranged in 4 arrays.
- The radiation can be polarized vertically, horizontally, and circularly by moving two opposing magnet arrays.

Sketch of APPLE- II Undulator*

*Source: Conceptual Design Report ST/F-TN-07/12, Fermi@Elettra, 2007



Design Consideration: Undulator Type

Condition : Variably Polarized Undulator

APPLE-II Type Undulator

- Advanced Planar Polarized Light Emitter
 APPLE
- The undulator is made of pure permanent magnets which are arranged in 4 arrays.
- The radiation can be polarized vertically, horizontally, and circularly by moving two opposing magnet arrays.

Sketch of APPLE- II Undulator*

*Source: Conceptual Design Report ST/F-TN-07/12, Fermi@Elettra, 2007

Decision: APPLE-II Type Undulator

Design Consideration: Undulator Type

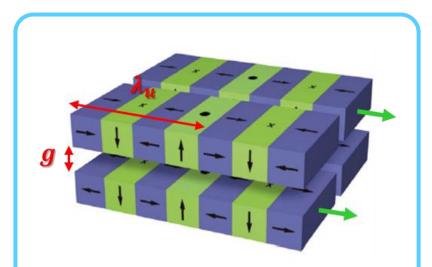
Condition : Variably Polarized Undulator

Important Equations

The Peak magnetic field (B_{max}) :

 $B_{max}[T] = a_1 \times \exp\left[a_2 \frac{g}{\lambda_u} + a_3 \left(\frac{g}{\lambda_u}\right)^2\right]$,

where a_1, a_2 , and a_3 are coefficients and $0.1 < \frac{g}{\lambda_1} < 1$.


Undulator Parameter (K)

$$K = 0.934 \cdot B_{max}[T] \cdot \lambda_u[cm]$$

Radiation Wavelength (λ_{rad})

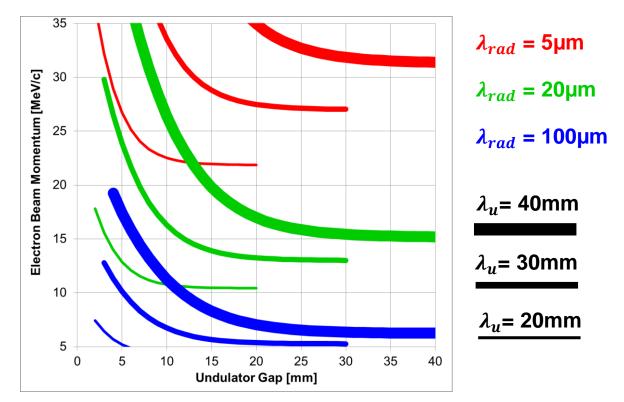
$$\lambda_{rad} = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

where γ is Lorentz factor.

Sketch of APPLE- II Undulator*

*Source: Conceptual Design Report ST/F-TN-07/12, Fermi@Elettra, 2007

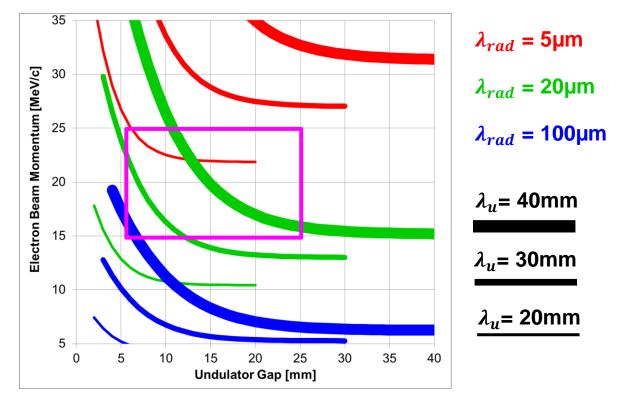
Decision: APPLE-II Type Undulator



Design Consideration: Undulator Period Length

Conditions : in-air undulator, range of e-beam momentum is 15 -25 MeV/c

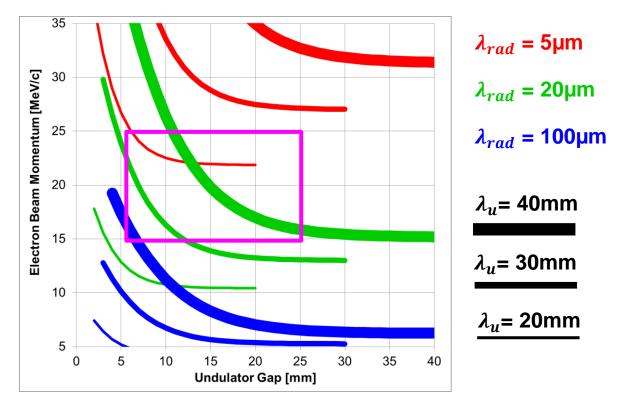
- > λ_u = 20mm, 30mm and 40mm were considered.
- > λ_{rad} = 5µm, 20µm and 100µm were considered.
- Typical range of gap variation (in-air APPLE-II undulator):
 6.5mm to 25mm.



Design Consideration: Undulator Period Length

Conditions : in-air undulator, range of e-beam momentum is 15 -25 MeV/c

- > λ_u = 20mm, 30mm and 40mm were considered.
- > $\lambda_{rad} = 5\mu m$, 20 μm and 100 μm were considered.
- Typical range of gap variation (in-air APPLE-II undulator):
 6.5mm to 25mm.
- The purple box shows the possible operation region.



Design Consideration: Undulator Period Length

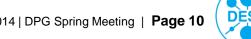
Conditions : in-air undulator, range of e-beam momentum is 15 -25 MeV/c

- > λ_u = 20mm, 30mm and 40mm were considered.
- > λ_{rad} = 5µm, 20µm and 100µm were considered.
- Typical range of gap variation (in-air APPLE-II undulator):
 6.5mm to 25mm.
- The purple box shows the possible operation region.

Decision: $\lambda_u = 20 \text{ mm}$ for $\lambda_{rad} = 5 \text{ µm}$ $\lambda_u = 40 \text{ mm}$ for $\lambda_{rad} = 20 \text{ µm}$ and 100 µm

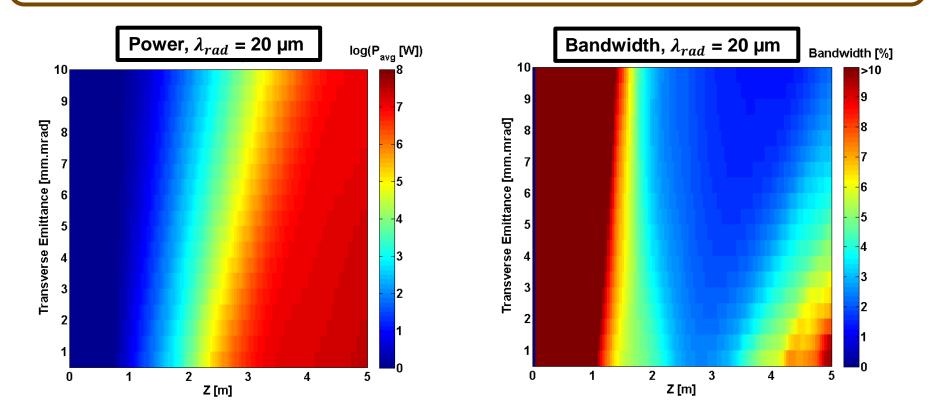
Design Consideration: Undulator Length

Conditions : maximum undulator length of 5 m, radiation bandwidth ~5%, peak power in MW level


- GENESIS1.3 code was used for SASE FEL simulation.
- The space charge calculation is excluded in the simulation.
- In this presentation, only 20 µm and 100 µm cases were studied.
- > The model Gaussian electron beam was used.
- > From preliminary beam dynamics simulations, the possible range of $\epsilon_{tr,rms}$ is **3 to 7 mm.mrad**.

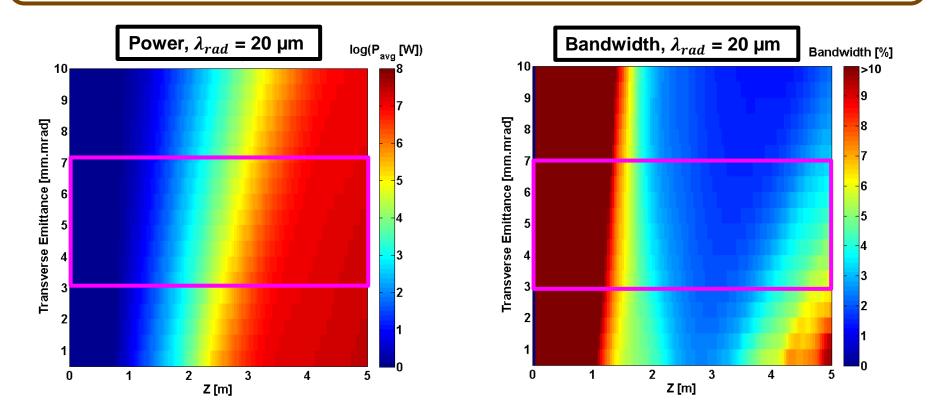
Procedure

- scan transverse emittance in the simulations
- Find the compromised undulator length for the expected peak power and bandwidth


Parameter	Detail	
undulator type	Helical	
undulator period length (λ_u)	40 mm	
number of period	125	
radiation wavelength (λ_{rad})	20 µm	100 µm
undulator gap (g)	14 mm	6.5 mm
K / $\sqrt{2}$	0.90	1.99
<p<sub>z></p<sub>	21 MeV/c	15 MeV/c
P _{z,rms} / <p<sub>z></p<sub>	0.1%	
bunch charge	4 nC	
rms bunch length	2.4 mm	
peak current	200 A	
σ _x , σ _y	~0.2 mm	

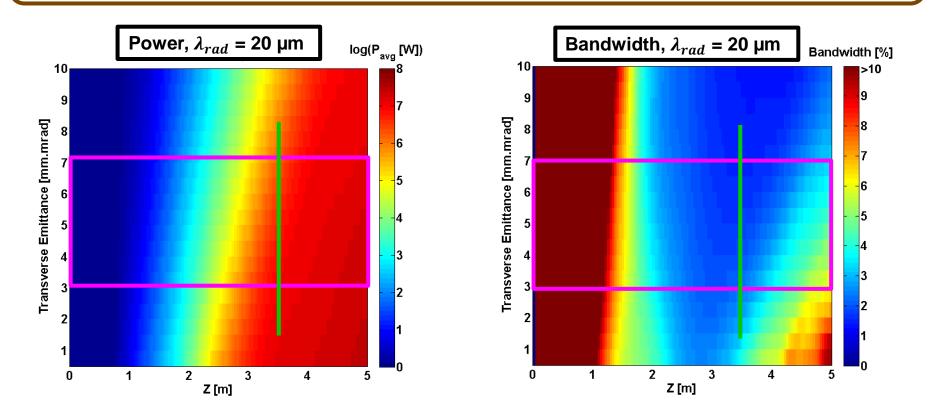
Design Consideration: Undulator Length for λ_{rad} = 20 µm

Conditions : maximum undulator length of 5 m, radiation bandwidth ~5%, peak power in MW level



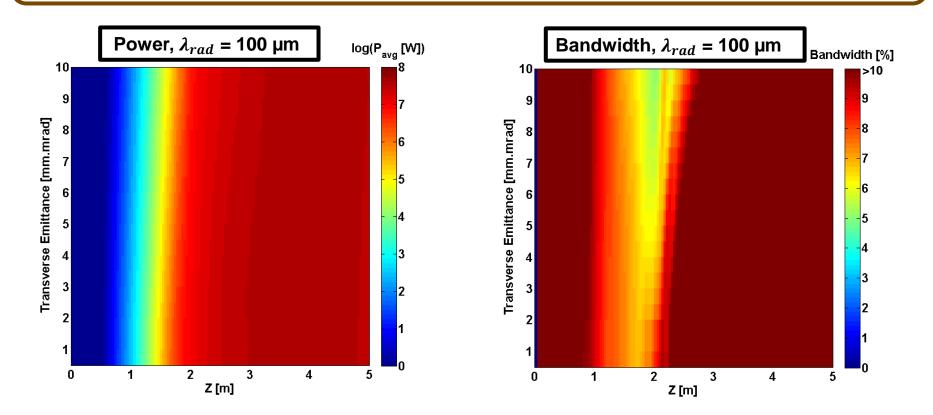
Design Consideration: Undulator Length for λ_{rad} = 20 µm

Conditions : maximum undulator length of 5 m, radiation bandwidth ~5%, peak power in MW level



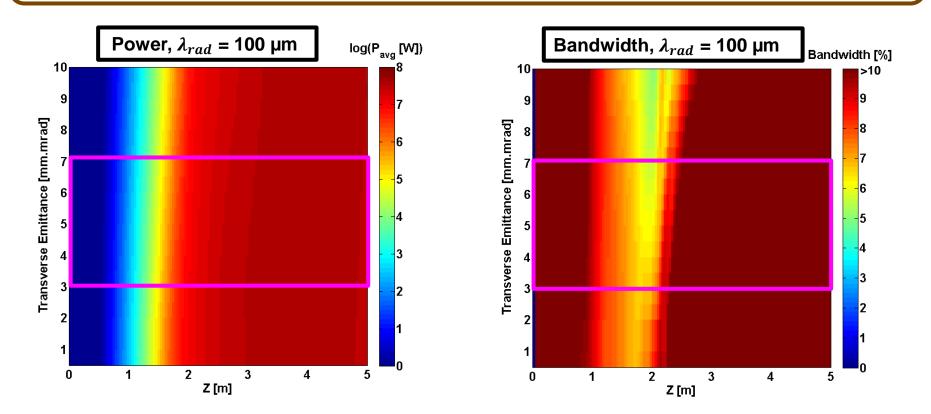
Design Consideration: Undulator Length for λ_{rad} = 20 µm

Conditions : maximum undulator length of 5 m, radiation bandwidth ~5%, peak power in MW level


Undulator length of **3.5 m** for $\lambda_{rad} = 20 \ \mu m$

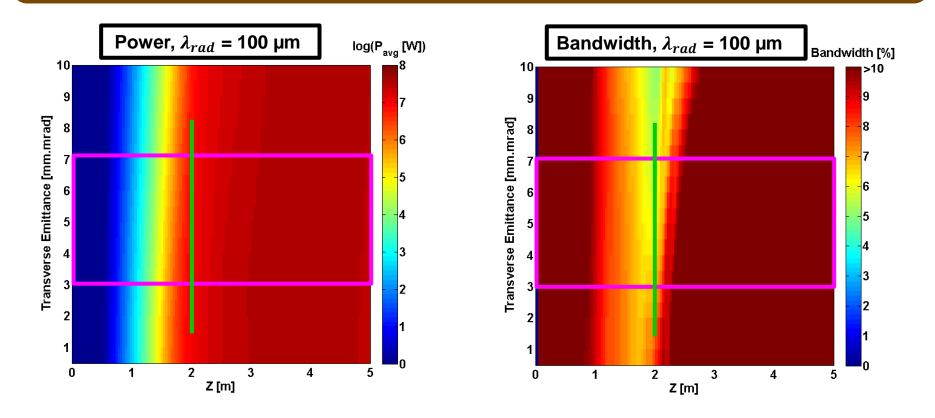
Design Consideration: Undulator Length for λ_{rad} = 100 µm

Conditions : maximum undulator length of 5 m, radiation bandwidth ~5%, peak power in MW level



Design Consideration: Undulator Length for λ_{rad} = 100 µm

Conditions : maximum undulator length of 5 m, radiation bandwidth ~5%, peak power in MW level



Design Consideration: Undulator Length for λ_{rad} = 100 µm

Conditions : maximum undulator length of 5 m, radiation bandwidth ~5%, peak power in MW level

Undulator length of **2** m for λ_{rad} = 100 µm

Specification	Decision
Undulator Type	In-air, APPLE-II type undulator
Range of gap variation	6.5 mm to 25 mm (preliminary)
Period Length	$\lambda_u = 20 \text{ mm for } \lambda_{rad} = 5 \text{ µm} (?)$ $\lambda_u = 40 \text{ mm for } \lambda_{rad} = 20 \text{ µm}$ $\lambda_u = 40 \text{ mm for } \lambda_{rad} = 100 \text{ µm}$
Undulator length	under study(between 2m to 5m)

Outlook

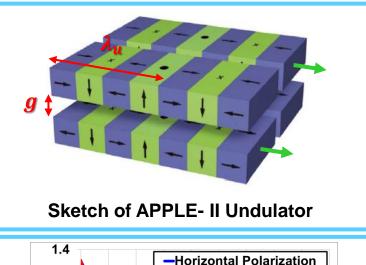
- Repeat the last part of the study including the space charge effect.
- > Perform the same study for $\lambda_{rad} = 5 \mu m$.
- Start to End (S2E) simulation for SASE FEL.

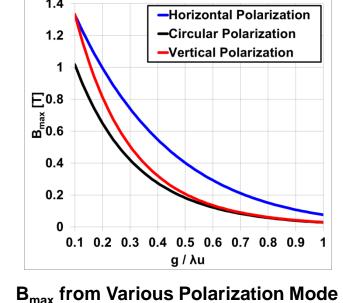
Simulation of the production of THz radiation using Coherent Transition Radiation.

Backup: more information of APPLE-II

APPLE-II Type Undulator*

$$B_{max}[T] = a_1 \times \exp\left[a_2 \frac{g}{\lambda_u} + a_3 \left(\frac{g}{\lambda_u}\right)^2\right]$$
,

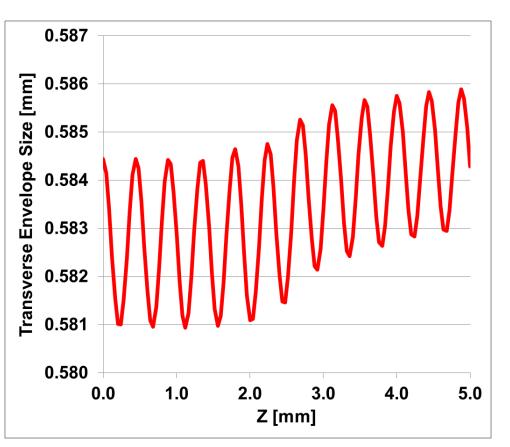

Polarization	a 1	a 2	<i>a</i> ₃
Horizontal	1.76	-2.77	-0.37
Circular	1.54	-4.46	0.43
Vertical	2.22	-5.19	0.88


*Reference: Conceptual Design Report ST/F-TN-07/12, Fermi@Elettra, 2007

Example of APPLE-II Parameters

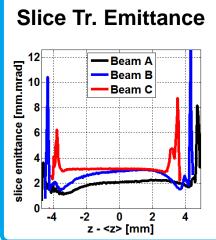
	UE40**
gap (magnetic)	6.5 – 25 mm
gap (vacuum)	5.0 mm
period length	40 mm
undulator length	4 m
nmidt, Undulators for	r SwissFEL, FEL2

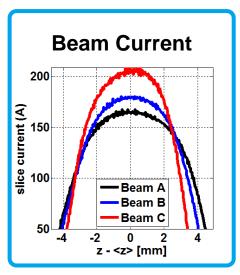
**T.Schmidt, Undulators for SwissFEL, FEL20 Liverpool

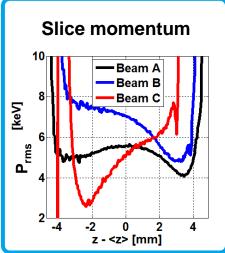


Parameter	Detail
undulator type	Helical
K / √2	1.9092
undulator period length (λ_u)	4 cm
number of period	125
radiation wavelength (λ_{rad})	100 µm
bunch charge	4 nC
rms current length	2.4 mm
peak current	200 A
e-beam energy	15 MeV
energy spread	20 keV
β _x , β _y	14.4 cm
ε _x , ε _y	10 mm.mrad
α_x, α_y	0

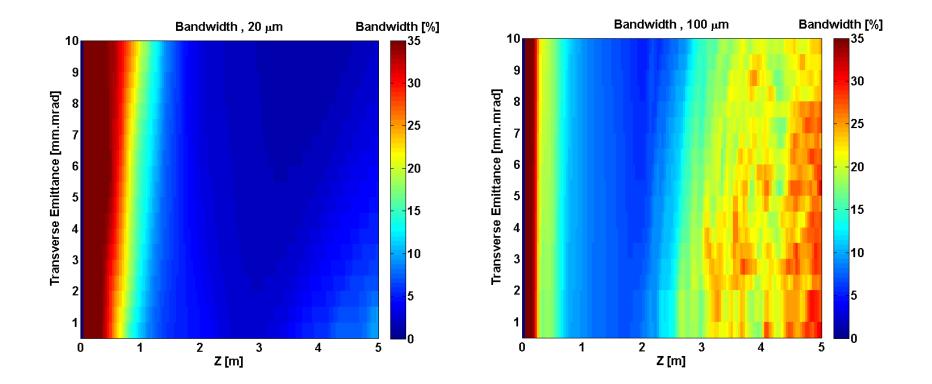
Transverse envelope size = $6^*\sigma_{x,y}$



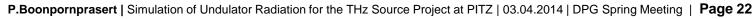



Backup: Preliminary Beam Dynamics simulations

ASTRA input parameters			
Parameter	Beam A	Beam B	Beam C
rms laser spot size (mm)	1.092	1.455	3.500
I _{main} (A)	378	380	340
Φ _{gun} (degree)	-1.404	-1.404	-1.404
E _{max,booster} (MV/m)	10.2	10.2	10.2



Beam parameters after matching			
Parameter	Beam A	Beam B	Beam C
ε _{tr,n} (mm.mrad)	2.66	4.99	7.01
<ɛ _{slice} > (mm.mrad)	2.06	2.74	3.33
<p<sub>rms,slice> (keV)</p<sub>	7.35	9.23	9.60
I _{peak} (A)	160	170	205



Backup: Bandwidth (full scale)

DESY