Entwurf und Konstruktion der Plasmakammer für Zeuthen

HELMHOLTZ

M. Groß, G. Koß, A. Donat D. Richter (HZB)

Technisches Seminar Zeuthen, 14.1.2014

Motivation: Warum Plasmabeschleunigung?

- > Warum ein neuer Beschleunigertyp wir können das doch schon?
- Herkömmliche Beschleuniger funktioneren sehr gut sind aber auch sehr groß

Name	Final energy	Size
HERA	27.5 GeV	2 km diameter
SLAC (SLC linac)	50 GeV	3.2 km length
European XFEL (linac)	17.5 GeV	2.1 km length

- > Maß für die Beschleunigung: Elektrische Feldstärke (Gradient)
- Herkömmliche Beschleunigerkavitäten: Bis zu 100 MV/m
- Möglich mit Plasmabeschleuniger: Bis zu 1 TV/m !!! = 1.000.000 MV/m

Problem von herkömmlichen Beschleunigern

- Grundsätzliches Problem: Mikroskopische Teilchen werden mit makroskopisch erzeugten Feldern beschleunigt
 - Kleine Feldstärke → Großer Beschleuniger

Lösung: Gezielte Ionisation eines Gas zu einem Plasma mit den gewünschten Eigenschaften

Grundprinzip

> Beschleunigung eines Elektrons mit einer Wanderwelle

Bei optimaler Ausnutzung von Nichtlinearitäten sind extrem starke Beschleunigungen möglich

Erstes PITZ Experiment: Modulation in Plasma

- Mit zunehmender Ausbreitung im Plasma bildet sich im Elektronenpaket eine Substruktur aus
- Dies bedeutet, dass das Elektronenpaket mit dem Plasma interagiert
- In einem Experiment könnten diese Substrukturen in Abhängigkeit von Plasmadichte etc. genau vermessen werden

Lithium Plasmazelle

> Prinzip:

- Lithium wird in zentraler Röhre verdampft (700°C)
- Die Lithium Zone wird auf beiden Seiten durch einen steilen Temperaturegradienten und durch einen Helium Puffer scharf definiert
- Nach Stabilisierung der Druckregionen:
 - Lithium Gas wird mit Laser ionisiert
 - Elektronenstrahl f
 ür Plasmaexperiment wird injiziert

Aus: P. Muggli et al. "Photo-Ionized Lithium Source for Plasma Accelerator Applications", *IEEE Trans. Plasma Science* **27** (1999), pp. 791-799

1. Ausgangslage, Einbaubedingungen in der PITZ-Beamline

- 1.1. Erste Vorstellungen
- 1.2. Seitliche Lasereinkopplung
- 1.3. Festlegung des Einbaubereichs

2. Aufbau der Plasmatrichterzelle (Pla_TZ)

- 2.1. Auswahl der Materialien/Aufbau der Schweißbaugruppe
- 2.2. Heizung
- 2.3. Wärmedämmung
- 2.4. Gehäuse mit Lüftung
- 2.5. Gestell
- 2.6. Gesamtaufbau
- 3. Zusammenfassung und Ausblick

- 1. Ausgangslage, Einbaubedingungen in der PITZ-Beamline
- der Zweck der Plasmazelle ist es, in ihr einen Plasmakanal zu erzeugen und das exakte räumliche Aufeinandertreffen mit dem Elektronenstrahl zu ermöglichen
- dazu muss es wie in Vorgängerexperimenten eine Heizung zum Verdampfen des Lithiums geben, Kühlung zum Kondensieren desselben und Laserenergie zum Erzeugen des Plasmakanals
- > dies geschieht in einer definierten Helium-Atmosphäre
- > die Besonderheiten bei PITZ bestehen in dem geringen vorhandenen Einbauraum und der sicheren Abtrennung der Plasmazelle vom Rest der PITZ-Beamline
- > das geschieht durch den Abschluss der Zelle zum Beamrohr durch Kaptonfolie
- > die Plasmazelle muss entfernbar sein

1.1. Erste Vorstellungen

- > die erste Vorstellung war, die eigentliche Zelle in einem Rezipienten zu haben um sie aus dem Strahl herausfahren zu können
- > das erwies sich platzmäßig sowohl auch aufwandsmäßig als zunächst nicht realisierbar
- in weiteren Überlegungen ohne Rezipient sollte der Laserstrahl wie in Vorgängerexperimenten axial in den Plasmakanal eingefädelt werden

1.2. Seitliche Lasereinkopplung

- > die axiale Einkopplung ließ sich optisch nicht realisieren und es kam die Idee des seitlichen Lasereinkoppelns auf
- > dabei wird radial ein aufgeweiteter Laserstrahl mit zwei Hohlspiegeln durch die seitlichen Fenster auf die Bahn des Elektronenstrahls fokussiert, mehrfach in Reihe versetzt entsteht dann zentral eine energetisch verdichtete Zone in der sich der Plasmakanal bilden soll
- > die Aufweitung des Strahls ist bei dieser Art des Lasers nötig um die Energiedichte im Fenstermaterial gering zu halten

Schnittdarstellung: Prinzip der seitlichen Lasereinkopplung

- 1.3. Festlegung des Einbaubereichs
- > der Einbauort in der PITZ-Beamline wurde durch Physiker festgelegt
- > zu dem Zeitpunkt war noch nicht die Boosterverschiebung im Gespräch, deshalb ist der Einbauraum relativ begrenzt
- > da dort auch noch Quadrupole vor und nach der Kammer nötig sind ist die verfügbare Einbaulänge nur 528 mm lang

Ausschnitt PITZ-Beamline

- 2. Aufbau der Plasmatrichterzelle (Pla_TZ)
- > mittels des Strahlenverlaufs die Zelle sozusagen "herummodelliert"

Schnitt Plasmazelle ohne Dämmung/Gehäuse

- 2.1. Auswahl der Materialien und Aufbau der Plasma-Kernzelle
- > Folgende Prämissen gab es bei der Schweißbaugruppe als Kernstück zu erfüllen:
- hohe Thermische Belastbarkeit bis ca. 800°C
- hohe mechanische Festigkeit bei diesen Temperaturen
- geringe Verzunderung, gute Schweißbarkeit
- Vakuumtauglichkeit, He-Dichtheit, geringe Permeabilität
- Beschaffbarkeit in Relation zu unseren Bearbeitungsmöglichkeiten und benötigten Mengen

- > Aufbau der Schweißbaugruppe(Kernzelle)
- > das Beamrohr ist aus drei Teilen aufgebaut (geschweißt):
- ein zentrales Rohr mit den Öffnungen f
 ür den Laserstrahl
- zwei Enden mit den nötigen Versorgungsflanschen und integrierter Wasserkühlung
- > an das Zentralrohr sind zu beiden Seiten die trichterförmigen Seitenteile geschweißt
- an diese wiederum sind die DN-160-Flansche geschweißt, welche ebenso eine integrierte Wasserkühlung und die Anschlüsse für den Heliumgaspuffer besitzen

Plasma-Kernzelle (Schweißbaugruppe)

2.2. Heizung

> durch den speziellen Aufbau der Plasmazelle musste ein Übertragungselement für die Heizelemente zur Kammer eingesetzt werden, es besteht aus Kupfer und ist vernickelt (Verzunderungsschutz)

Heizung komplett ohne obere Platte

- > im Zentralteil werden die Heizelemente mit einer Platte eingepresst
- > an den Außenseiten wird das Heizelement gewickelt und mit Schrauben gehalten
- > die Anschlüsse werden nach außen durch die Dämmung und das Gehäuse geführt
- > als Heizelement wurden Thermocoax-Elemente gewählt, wurde vorher auch im Testaufbau benutzt
- sie sind gut formbar, haben eine hohe Leistungsdichte
- > die elektrischen/mechanischen Parameter ergeben sich aus den ANSYS-Berechnungen als Leistungswerte, dann mit Hilfe einer Dimensionierungsanleitung von Thermocoax berechnet
- > die Thermosensoren für die Steuerung sind auch an dem Kupfer-Zentralteil angeklemmt
- sie ermöglichen die Temperaturmessung- und regelung

2.3. Wärmedämmung

- formfestes Material mit sehr guten Dämmeigenschaften
- besteht aus 6 Einzelplatten (40/50 mm dick)
- die beiden zentralen Platten sind entsprechend der Plasmazellenform ausgefräst (auch Kanäle für die Zuleitungen)
- vird insgesamt mit Folie umgeben um die Partikelstreuung zu minimieren

Dämmbaugruppe

2.4. Gehäuse mit Lüftung

- das Gehäuse besteht aus RK-Profilen gekoppelt mit speziellen Teilen zur Flanschhalterung
- Sehäuse dient der z-Fixierung der Kammer über DN-160-Flansche, Gehäusestruktur und Zentralstift/Zentralanker im Gestell
- hält über die Ausgleichschienen die Dämmstruktur um die Plasmazelle herum fest
- hat einen durch Radiallüfter belüfteten Spalt zwischen Dämmung und Außenblechen um die Blechtemperatur niedrig zu halten (< 50°C)</p>
- > Entlüftung erfolgt über die oberen Bleche

DISY

Gehäuse mit Radiallüftern/Ausgleichselementen und Zentralstift

2.5. Gestell

- > das Gestell ist die Schnittstelle zwischen Beamaufbau im Tunnel und Plasmazelle
- > es besteht aus zwei Teilen:
- fest einjustierte Gestellbasis (dient auch als Basis f
 ür Kammer-Ersatzrohr)
- abnehmbares Obergestell zur Kammerhalt. (mittels Passstift/Buchse wiederholbar räumlich fixiert)
- Plasmazelle wird über Gehäuse mit Zentralstift im Obergestell mit Zentralanker in z-Position fixiert
- Obergestellarme halten Kammer in x-Position und können sich nach außen biegen um die Verlängerung der Zelle bei Erwärmung aufzunehmen (durch Zentralanker gleichmäßig zu beiden Seiten des Kammerzentrums)

Gestell komplett

2.5. Gesamtaufbau

4. Zusammenfassung und Ausblick

- die Plasmazelle in PITZ ist in dieser Form komplettes Neuland
- es wurden und werden Erfahrungen im konstruktiven und technologischen Bereich gewonnen f
 ür die weitere Entwicklung der Plasmabeschleunigung
- durch die Trichterbauform und vier einzeln steuerbare Heizelemente sind wir sehr flexibel im Betrieb der Zelle
- es gab und gibt Überlegungen die Kammer aus Titan zu bauen, man hätte z.B. kein Probleme mit der Permeabilität und durch geringere Wärmeausdehnung weniger mechanische Spannungen im Material
- schien bis jetzt an der Warmfestigkeit der Titanlegierungen zu scheitern, wäre aber bei Ersatz des Lithiums durch Rubidium einsetzbar, da die Heiztemperaturen viel geringer sein brauchten

 \dot{Q}_L ... Leckstrom \dot{Q}_P ... Permeationsstrom \dot{Q}_D ... Desorptionsstrom

p. . . Druck V. . . Volumen

Schematische Anordnung

Dichtung Kaptonfolie

Übertruck.

Die wichtigsten Gase sind Wasserstoff, Wasser, Stickstoff, Sauerstoff und Kohlendioxid.

Nach etwa einer Woche Pumpzeit ist die Ausgasrate etwa wie die einer "frischen" Metalloberfläche.

Permeationsstrom durch Kaptonfolie

Die meisten Gasteilchen kommen also von der Vitondichtung und nicht durch die Kaptonfolie.

Langfristiger Betrieb von Ionengetterpumpen führt zu instabilem Betrieb bei Edelgasen. Stabile Betriebsweise über einige Wochen ist experimentell nachgewiesen.

Heliumdruck im gun cavity

Keine Gefährdung des Boosterbetriebs

Zerstörung der Folie (kleine Löcher)

Perforieren der Kaptonfolie durch Elektronen.

Technisches Seminar| 14.1.2014 | Seite 30

Zerstörung der Folie (große Löcher, Riß)

Grobes Zerstören durch einen Druckstoß. UNMÖGLICH

Ab einem Lochdurchmesser größer als 2 mm gelangt Li sicher ins PITZ-Vakuum.

Temperaturvorgaben:

Temperatur für den physikalischen Prozess:T = 740 °CTemperaturkonstanz über die Länge der Plasmazelle: $\Delta T \le 7\%$

Aus Arbeitschutzgründen:

Kühlung der Flansche in der Beamline auf	T < 60 °C
Kühlung der Flansche des Laserfensters auf	T < 60 °C
Kühlung des Außengehäuses auf	T < 60 °C

Motivation:

hohe Temperaturen: \rightarrow geringere Festigkeitswerte.

große Temperaturgradienten: \rightarrow thermische Spannungen.

 \rightarrow Übersteigen die thermischen Spannungen die geringeren Festigkeitswerte?

> Ziel der Simulation:

Verwendung des FE-Programms ANSYS Workbench

- Ermittlung der Heizleistung für T_{max} ca. 740 °C unter Einfluss von

 - verschiedenen (Wasser)-Konvektionen für die Kühlung der Flansche
 - Wärmestrahlung
 - für verschiedene Werkstoffe: hitzebeständiger Edelstahl, Wst.-Nr 1.4828

Titan Grade 5, Wst-Nr. 3.7165

- Eintrag der Heizleistung derart, dass die Temperatur entlang des Beamrohres weniger als 7 % schwankt
- Ermittlung der thermischen Ausdehnung und der mechanischen Spannungen und Dehnungen, elastisch und plastisch
- Werkstoffeignung

> Vorbereitung des 3D-Modells in ANSYS:

> Werkstoffvergleich

- **1.4828** ist ein nichtrostender hitzebeständiger austenitischer Chrom-Nickel-Stahl
- mit hoher Zugfestigkeit bei höheren Temperaturen im Vergleich zu anderen Güten
- ideal geeignet für Hochtemperatur-Anwendungen.
- bis ca. 1000°C zunderbeständig an Luft
- gute Schweißeignung
- Anwendungsbereich 800 °C bis 1000 °C
- Titan Grade 5 (Wst.-Nr. 3.7165) ist die am meisten

verwendete Legierung der Alpha-Beta-Gruppe

- hohen Festigkeit bei geringer Dichte
- korrosionsbeständig
- geringe Festigkeit bei T > 530 °C
- obere Anwendungstemperatur ca. 400 °C

(hier nicht betrachtet: neue Generation von Hochtemperatur Titan-Legierungen mit Einsatztemperaturen bis 600 ... 740 °C. Materialwerte liegen nicht vor.)

> Simulationsergebnisse:

> Temperaturverteilungen:

hier für 1.4828 gezeigt, für Titan ähnlich

> Temperaturverlauf im Beamrohr:

Edelstahl 1.4828

> Längenänderung des Beamrohres:

Titan Grade 5 3.7165

> Max. Spannung im Hauptachsensystem, thermisch, im Schweißnahtauslauf, (nach CAB-Modell)

(von-Mises-)Stress, thermisch, Pfad Beamrohr unten:

Zusammenfassung der Ergebnisse: Vergleich der Spannungen:

Edelstahl 1.4828 [1]:	Titan Grade 5 3.7165:
Zugfestigkeit R _m @ 750 °C: ca 350 MPa	Zugfestigkeit R _m @ 750 °C: ca 210 Mpa ?
Streckgrenze R _{p1} @ 750 °C: ca 135 MPa	Streckgrenze R _{p1} @ 750 °C: ca 50 MPa ?
-> vorhandene Spannung:	-> vorhandene Spannung:
σ _{S1, max @ 740 °C} = 182 Mpa	σ _{S1, max @ 740 °C} = 139 MPa
Sicherheit gegen Fließen: v ≈ 0,74	Sicherheit gegen Fließen: v ≈ 0,34
Plastischer Dehnungsanteil: 0,95%	Plastischer Dehnungsanteil: 0,3%
Zugfestigkeit R _m @ RT: ca 675 MPa	Zugfestigkeit R _m @ RT: ca 895 MPa
Streckgrenze R _{p0,2} @ RT: ca 400 MPa	Streckgrenze R _{p0,2} @ RT: ca 826 MPa
[1]: http://www.dew-stahl.com/fileadmin/files/dew- stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1.4828_de.pdf	[2]:http://www.bibusmetals.ch/fileadmin/editors/countries/bmag/datasheets/Titan%20Grade%205.
	[3]: http://www.thyssenkrupp.ch/documents/Titan_Grade_5.pdf [4]: A. Donat: Die Festigkeitswerte oberhalb 530°C wurden aus [1] und [2] interpoliert.

Ob Titan Grade5 (3.7165) bei T > 530°C verwendet werden kann, muss im Versuch geklärt werden. In Datenblättern wird als obere Anwendungstemperatur 400 ... 530 °C angegeben. Die hier verwendeten Festigkeitswerte bei T > 530 °C sind von mir extrapolierte Werte lediglich für die Berechnung!