Accelerator Activities at PITZ

Plasma acceleration etc.

Outline

- Motivation / Accelerator Research & Development (ARD)
- Plasma acceleration
 - Basic Principles
 - Activities
 - SINBAD
- ps-fs electron and photon beams
 - Ellipsoidal laser, RF gun, Undulator

Matthias Groß

Klausurtagung Schloss & Gut Liebenberg 20. September 2013

Accelerator Technology

- Light sources to investigate materials. Applications in
 - Life Sciences (Biology, Chemistry, Medicine)
 - Material Technology
 - Fundamental Research
 - etc.
- Accelerators for particle- and nuclear physics
 - Constitution of matter
 - Fundamental forces
 - etc.
- For this we need
 - High beam energy
 - High particle density
 - Very short particle bunches

PITZ activities

Helmholtz ARD Program – Accelerator R&D as a Research Field

Accelerator physics:

- Originally part of
 - high energy physics
 - nuclear physics
 - research with photons, neutrons, ions (PNI)
- Since 2010: ARD is part of HGF portfolio program → extra funding for ARD
- Starting 2015: own topic in HGF program (POF III) – recognized as a future oriented research field
- Significant, stable funding (base budget) for accelerator R&D; independent of big science projects

Coordinator: Reinhard Brinkmann

Helmholtz ARD – Research Topics and DESY Involvement

Superconducting RF Technology

ASSC PITZ is involved

Development

RATOR

ps – fs Electron and **Photon Beams**

Novel Acceleration Concepts

Motivation for Developing Plasma Acceleration

- Why novel accelerators? we are already very good in accelerator technology!
- Conventional accelerators work well but they are very large

Name	Final energy	Size
HERA	27.5 GeV	2 km diameter
SLAC (SLC linac)	50 GeV	3.2 km length
European XFEL (linac)	17.5 GeV	2.1 km length

- > Conventional accelerator cavities: about 100 MV/m
- Possible with plasma acceleration: up to 1 TV/m !!!

10.000x

Problem of Conventional Accelerators

- Basic problem: microscopic particles are accelerated with macroscopically generated fields
 - Small field gradient → Large accelerator
- New Idea: Plas
 Utilize microsco big since the cr
 Ionization of a cacceleration
 How to drive a
 - With a strong laser pulse (laser driven plasma wakefield accelerator LDPWA)
 - With a particle beam (particle driven plasma wakefield accelerator PDPWA)

Plasma Wakefield Accelerator

Acceleration of an electron with a (travelling) wakefield

With optimal utilization of non-linearities we can achieve extremely strong acceleration

Players in Novel Accelerators: World Wide with High Concentration in Europe

Courtesy: Ralph Aßmann

ARD Research Activities at DESY

Novel Accelerator Research in LAOLA (laola.desy.de)

- REGAE (laser driven)
 - Probing of electrical fields with test beam (external injection)

- > FLASHForward (particle driven)
 - Energy boosting of FLASH bunch to utilize special pulse shapes

- LUX (laser driven)
 - Laser driven light source

- PITZ (particle driven)
 - Self-modulation of electron beam
 - High transformer ratio

EAAC Workshop 2013: Patric Muggli, AWAKE: A Proton-Driven Plasma Wakefield Experiment at CERN

- Use high energy proton beams from SPS to drive plasma wave
- Convert proton beam energy to accelerate electron beam in single stage

CNGS experimental area

Courtesy:

Matthias Groß | Klausurtagung Liebenberg | 20. September 2013 | Seite 12

Why Experiments at PITZ?

Favorable circumstances

- Very high level photo injector test facility
- Worldwide unique laser system (pulse shaper)
- Well developed diagnostics (high resolution electron spectrometer, etc.); soon: transverse deflecting cavity + dispersive section for longitudinal phase space measurements
- High flexibility (Pure R&D facility)

Possible contribution from PITZ:

- Self-modulation of electron beam (same principle as for proton beam!)
- Later: High transformer ratio (multiplying beam energy by factor up to 8) needs bunch compressor for high absolute energy gain

PITZ Overview

- UV Photocathode Laser
- > RF Gun, Booster
- Diagnostics
 - Slit scan (Transverse emittance)
 - Streak camera, soon TDS (Longitudinal emittance)
 - Screen stations (beam shape and position)
 - Tomography (Transverse emittance)
- New developments (plasma acceleration etc.)

Flexible Laser Pulse Formation at PITZ

- Photoinjector laser
- Developed and built by Max-Born Institute Berlin
- Key element: the pulse shaper

 Contains 13 birefringent crystals. Pulses are split according to polarization. Delay is given by crystal thickness; relative amplitude can be varied freely by adjusting relative angle between crystals

Plasma Cell Design – Currently in Fabrication

LAOLA@PITZ: High Transformer Ratio (TR) studies

- > Fundamental beam loading "theorem": $R \le 2$ for bunches with symmetric current profile
- Idea: Tailored bunch current profile (asymmetric bunch)

- Significant plasma acceleration of a probe bunch could be possible
 - Transformer Ratio up to 8 with matched plasma wavelength
- Needs bunch compressor for high absolute energy gain

Roadmap for Novel Accelerator Research at DESY

The Plasma @ DORIS Proposal...: SINBAD

Knowledge Transfer: PITZ to SINBAD

Helmholtz ARD – Research Topics and DESY Involvement

Superconducting RF Technology

ASS(PITZ is involved RATOR

Development

ps – fs Electron and **Photon Beams**

Novel Acceleration Concepts

Ellipsoidal Laser

- Expertise at PITZ: Optimizing electron bunch properties
- Fundamental parameter: shape of laser pulse
- Standard: temporal Gaussian
- Developed for European XFEL: temporal flat-top
- New project: ellipsoidal
- Benefits for linac driven light sources:
 - Lower emittance → higher brilliance
 - More linear phase space → better compression
 - Almost no beam halo → reduced radiation damage
 - Less sensitive to machine settings → higher stability

Electron Gun Development

Expertise at PITZ: Gun development to increase performance

Fundamental issues: cooling / stability

Development of IR/THz Source

Asset of PITZ: High charge, high quality electron beam available

Need: tunable THz source for pump-probe experiments at European

XFEL

- > Realization:
 - Use existing undulator design
 - APPLE: Choose polarization by moving magnets
 - Insert into PITZ beam line
 - High power, tunable FEL operation in IR/THz
 - Add on: low charge beams for electron diffraction (like REGAE)
- Other possibilities:
 - Use undulator radiation for electron beam diagnostics
 - IR/THz radiation source for users (+ preparation for beam time at XFEL)

Connection to users in Berlin / Brandenburg region

Summary

- Accelerator research is important for many applications and is conducted in many places around the world
- Plasma acceleration has the potential to revolutionize the way to build accelerators
- PITZ is working in plasma acceleration within the ARD environment in LAOLA collaboration
 - Current work: Self-modulation and high transformer ratio
 - Mid-term view: Important contributions to ARD test facility SINBAD
- PITZ expertise will also be driving force in several other accelerator developments
- > PITZ plays a significant role in the highly relevant field of accelerator R&D

