### Follow-up

# Construction of a Plasma Cell for Plasma Acceleration Experiments at PITZ

R. Brinkmann, A. Donat, J. Good<sup>%</sup>, <u>M. Gross</u>, F. Grüner<sup>#</sup>, B. Hidding <sup>§</sup>, M. Khojoyan, G. Klemz, G. Koss, M. Krasilnikov, A. Martinez de la Ossa, A. Oppelt, J. Osterhoff, C. Schroeder<sup>&</sup>, F. Stephan, I. Will<sup>\*</sup>

**DESY (Hamburg and Zeuthen)** 

and

<sup>%</sup> Karlsruhe Institut für Technologie

- # Universität Hamburg, CFEL
- § Universität Hamburg, University of Strathclyde
- \* Max-Born-Institut Berlin
- <sup>&</sup> Lawrence Berkeley National Laboratory, USA

**Matthias Gross** 

Construction of Plasma Cell at PITZ Hamburg, 10. September 2013







# Topic

LAOLA @ PITZ: Studies for Particle Driven Plasma Acceleration

### Self-modulation of electron beam (proof of principle for CERNs AWAKE exp.)

use high flexibility of photo cathode laser system:



Example: flat-top e-beam through plasma cell:





# **Designing a Plasma Cell for the PITZ Experiment**

#### Heat Pipe Oven Prototype was built

#### How to ionize the gas?





- Problems: Space restrictions at PITZ leads to
  - double cone structure with thin waist
  - strong influence of hole in mirror

#### > New idea: modify plasma cell to allow side coupling



2.5 mm

# Step 1: Insert Window into Side of Tube

### > Problems:

- Heating coil has to be redistributed
  - Cannot go across window
- > Hole has to be cut into wick\* -> functionality?
  - Flow of liquid Lithium could be disturbed leading to concentration of Lithium in hole area
- > Lithium could stick to window, absorb laser energy
  - Calculation: 20nm liquid Lithium thickness is enough to block 90% of laser light

\*steel mesh on tube inside to transport liquid Lithium to the tube center



# **Step 2: Add Helium Buffer Regions**

#### Prevent Lithium to reach side windows





# **Plasma Ionization Scenario**

- Side coupling of ionization laser here: ArF laser
- > Advantages:
  - No additional optical elements in electron beam line up- or downstream of plasma cell
  - Well defined beginning and end of plasma channel
  - Side windows could also be utilized for diagnostics
- > Challenges:
  - Complicated construction
  - Non-coaxial alignment of electron and laser beams

# **Plasma Cell Design – Currently in Fabrication**



### **Temperature Simulations of Plasma Cell**



# **Ionization Optics Simulations of Plasma Cell**

> Plasma density



> Setup



A few passes are enough

4 passes realized utilizing polarization



### Summary

- > Follow-up: plasma acceleration experiment at PITZ
- Standard design of plasma cell (coaxial coupling of ionization laser) difficult to integrate into PITZ beam line

### > New idea: side coupling of ionization laser – advantages:

- No additional optical elements in electron beam line
- Well defined beginning and end of plasma channel
- Side windows could also be utilized for diagnostics

Re-design of plasma cell with helium buffered side windows

- Construction in mechanical workshop is ongoing
- > Temperature distribution and plasma ionization was simulated

