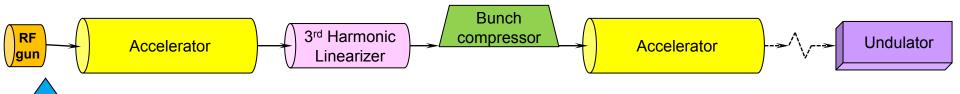

Photo Injector Test facility at DESY, Zeuthen site

PITZ EXPERIENCE ON THE EXPERIMENTAL OPTIMIZATION OF THE RF PHOTO INJECTOR FOR THE EUROPEAN XFEL

Mikhail Krasilnikov (DESY) for the PITZ Team

FEL 2013 conference, New York, USA, 27.08.2013



Motivation: High Brightness Photo Injector for SASE FEL

Linac based Free Electron Laser

- SASE FEL → high phase space density of electron bunches already from the source
 High brightness electron source = small transverse emittance
- > The Photo Injector Test facility at DESY in Zeuthen (PITZ) focuses on the development, test and optimization of high brightness electron sources for superconducting linac driven FELs (FLASH and the European XFEL)

Photo Injector Test Facility at DESY in Zeuthen (PITZ)

> RF gun

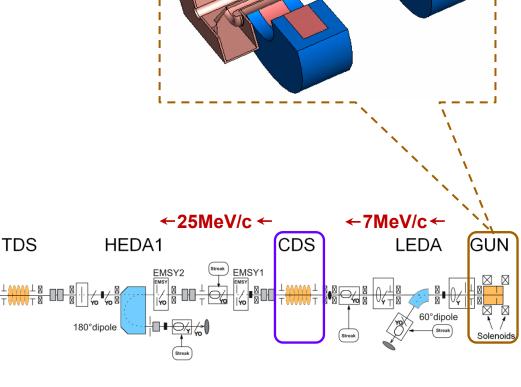
- L-band 1.6-cell copper cavity
- Dry ice cleaning → low dark current (<100uA@6MW)</p>
- Cs₂Te photocathode (QE~5-10%)
- LLRF control for amplitude and phase stability
- Solenoid for emittance compensation

Photocathode laser

elogib°06

- Pulse train structure
- Micropulse temporal shaping

CDS booster


HEDA2

L-band, 14-cell copper Cut-Disc-Structure

PST

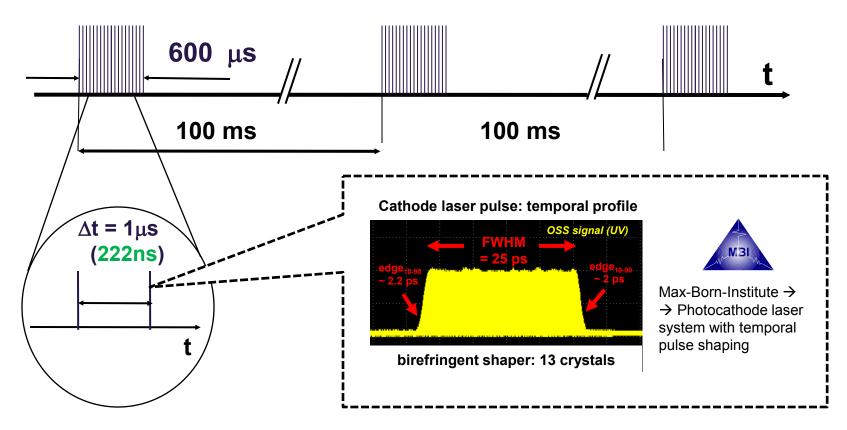
Phase Space Tomography module

■ Matching → emittance conservation

main solenoid

Dump

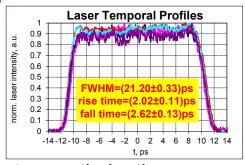
XFEL Photo Injector Performance Requirements → **PITZ**

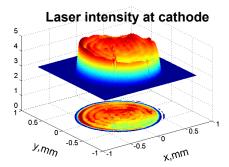

subsystem	parameter	value	remarks
RF gun cavity	frequency	1.3 GHz	L-band 10MW MBK
	E-field at cathode	60 MV/m	dark current issue
	RF pulse duration	650 us	max
	Repetition rate	10 Hz	max
Cathode laser	Temporal -> flat top -> FWHM	~20 ps	-challenge ~20ps
	Temporal -> flat top -> rise/fall time	2 ps	
	Transverse – rad.homogen.XYrms	0.3-0.4 mm	fine tuning -> thermal emittance
	Pulse train length	600 us	max
	Bunch spacing	222 ns (4.5MHz)	1us (1MHz) at PITZ now
	Repetition rate	10 Hz	max
Electron beam	Bunch charge	1 nC	0.02-1nC (Post-TDR)
	Projected emittance at injector	0.9 mm mrad	→ for 1 nC
	Bunch peak current	5 kA	after bunch compression (not at PITZ)
	Emittance (slice) at undulator	1.4 mm mrad	0.4-1.0 mm mrad (Post-TDR)

Pulse Train Time Structure: PITZ and European XFEL

Trains with up to 600 (2700) laser pulses → electron bunches of 1nC each

27000 electron bunches per second




How to achieve small emittance

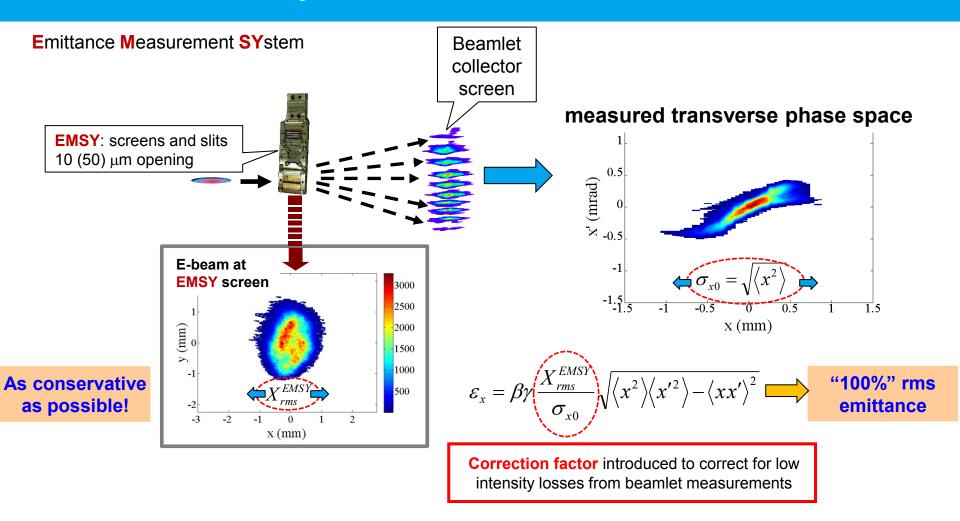
- High gradient at the cathode ~60MV/m (1.3GHz)
- Gun launch phase stability

10-MW in-vacuum directional coupler

Cathode laser pulse shaping

 $\min(\sqrt{\varepsilon_{n,x}\varepsilon_{n,y}})$

- Beam based alignment, trajectory optimization
- > Emittance compensation and conservation \rightarrow multi parametric machine tuning (solenoid, laser spot size, gun phase, booster,...)

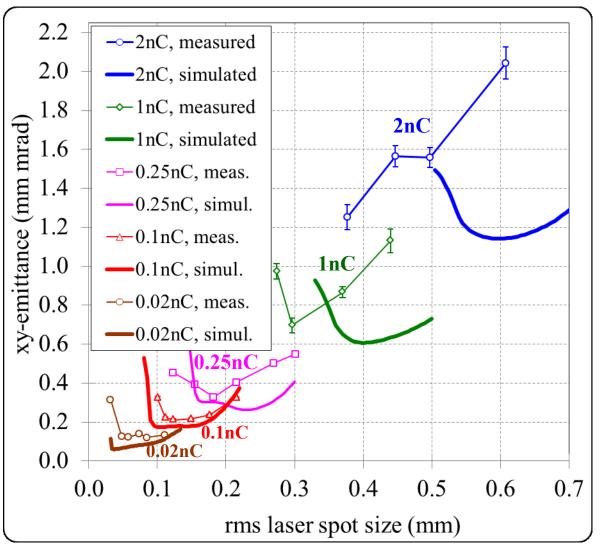


statistics

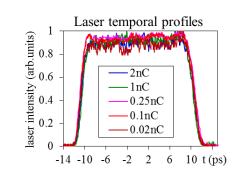
Gun phase ϕ_{α}

Solenoid I_{main}

Slit Scan Technique for Emittance Measurements at PITZ


"we are measuring more and more of less and less..."

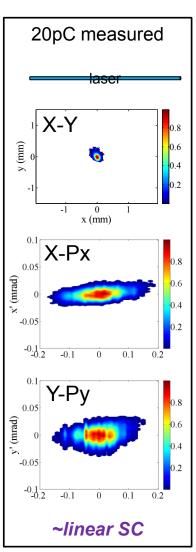
Emittance versus Laser Spot Size for various Charges

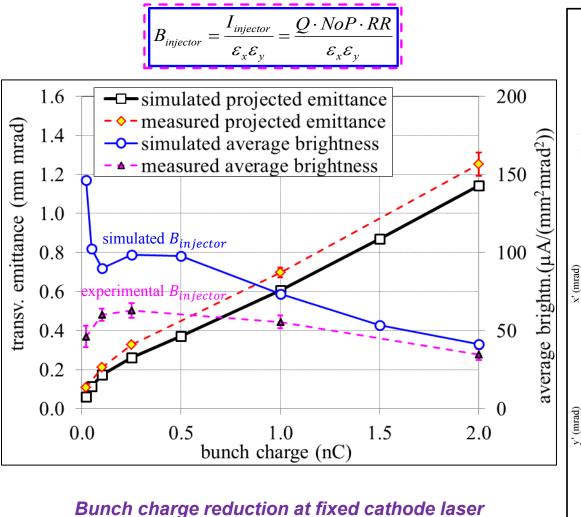

Measured (100%) rms normalized emittance vs. simulations

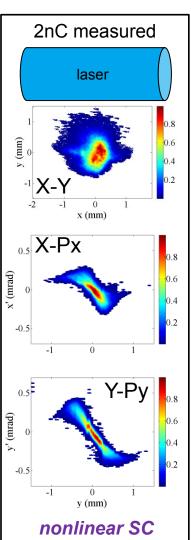
Minimum emittance $(\sqrt{\varepsilon_{n,x}\varepsilon_{n,y}})$

		Te,x Ie,y
Charge, nC	Measured, mm mrad	Simulated, mm mrad
2	1.25±0.06	1.14
1	0.70±0.02	0.61
0.25	0.33±0.01	0.26
0.1	0.21±0.01	0.17
0.02	0.121±0.001	0.06

- Optimum machine parameters (laser spot size, gun phase):
 experiment ≠ simulations
- Difference in the optimum laser spot size is bigger for higher charges (~good agreement for 100pC)
- Simulations of the emission needs to be improved

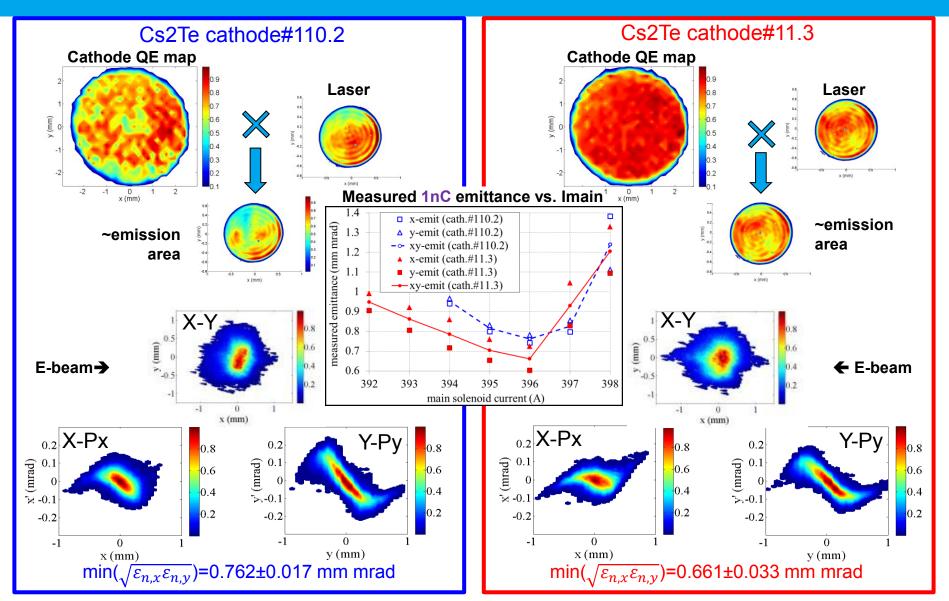




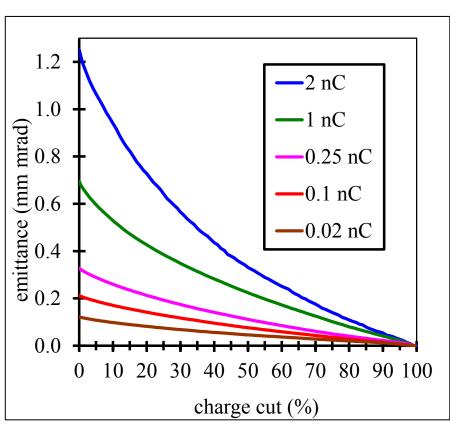


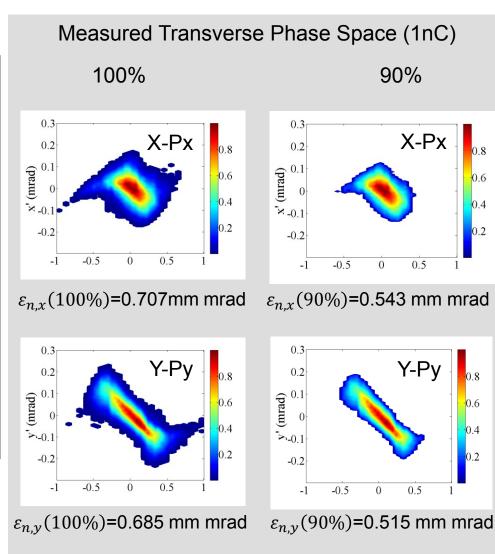
Emittance and Brightness versus Bunch Charge

Cathode laser pulse duration was fixed at 21.5 ps (FWHM) for all bunch charges!



pulse duration \rightarrow space charge (SC) modification


Emission Area Homogeneity

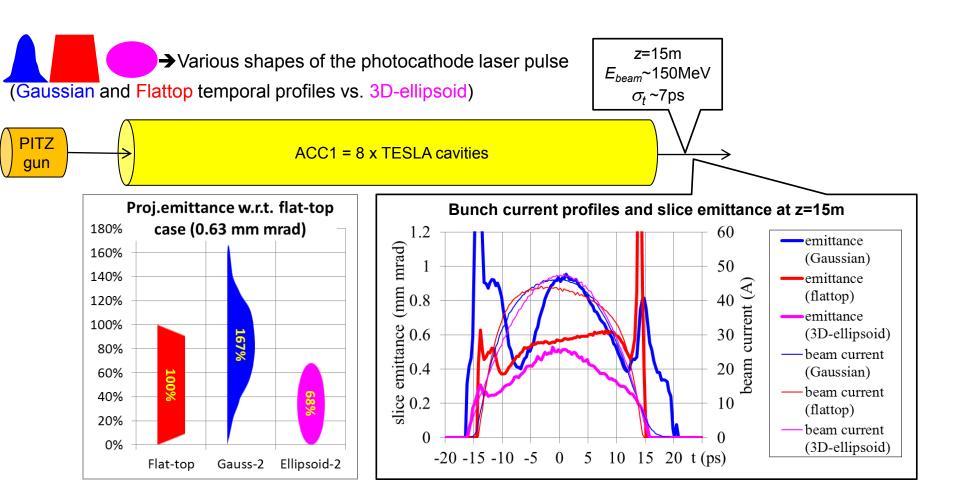


Core Emittance

Raw phase space (100%) → intensity cut → charge cut → core emittance

Conclusions and Outlook

- The Photo Injector Test facility at DESY in Zeuthen (PITZ) develops high brightness electron sources for SASE FELs:
 - specs for the European XFEL have been demonstrated and surpassed (emittance <0.9 mm mrad at 1nC)</p>
 - XFEL gun conditioned at PITZ (TUPSO30) → Hamburg in July 2013
 - beam emittance has also been optimized for a wide range of bunch charge (20pC...2nC)
 - optimized measured emittance:


Q	$\min(\sqrt{\varepsilon_{n,x}\varepsilon_{n,y}}),100\%$	$\min(\sqrt{\varepsilon_{n,x}\varepsilon_{n,y}}),90\%$
	mm mrad	mm mrad
20 pC	0.12	0.10
100 pC	0.21	0.17
250 pC	0.33	0.26
1 nC	0.70	0.53
2 nC	1.25	0.94

- PITZ serves also as a benchmark for theoretical understanding of the photo injector physics (beam dynamics simulations vs. measurements)
 - rather good agreement on emittance minima between measurements and simulations
 - optimum machine parameters: simulations ≠ experiment
 - simulations of the emission needs to be improved
- Outlook:
 - slice diagnostics (RF deflector) → transverse emittance and longitudinal phase space
 - next step in optimization → 3D ellipsoidal cathode laser pulses → BMBF and HGF projects (collaboration DESY-IAP-JINR)

Outlook: Beam Dynamics Simulations: XFEL Photo Injector (1nC)

- 3D ellipsoidal cathode laser pulses → Major improvements on beam emittance
- Developments of the new laser system are on-going → more details → TUPS036, TUPS039

Acknowledgements

PITZ Team

DESY Zeuthen:

G. Asova, H.-J. Grabosch, M. Groß, L. Hakobyan, I. Isaev, Y. Ivanisenko, L. Jachmann, M. Khojoyan, G. Klemz, W. Köhler, M. Krasilnikov, M. Mahgoub, D. Malyutin, M. Nozdrin, A. Oppelt, M. Otevrel, B. Petrosyan, S. Rimjaem, A. Shapovalov, F. Stephan, G. Vashchenko, S. Weidinger, R. Wenndorff

DESY, Hamburg: K. Flöttmann, M. Hoffmann, S. Lederer, H. Schlarb, S. Schreiber

MBI, Berlin: I. Templin, I. Will

INR, Moscow: V. Paramonov

HZB, Berlin: D. Richter

With contributions from PITZ partners:

DESY (Hamburg); Hamburg University; HZB (Berlin); INFN (Milan, Italy); INR (Troitsk, Russia); INRNE (Sofia, Bulgaria); LAL(Orsay, France); MBI(Berlin); STFC (Daresbury, UK); TUD (Darmstadt); ThEP (Thailand); YERPHI (Yerevan, Armenia)

Thank you for your attention!

