Studies for Particle Driven Plasma Acceleration at PITZ

Experiments planned utilizing PITZ (Photo Injector Test facility at DESY, Zeuthen site)

Matthias Gross EAAC 2013 workshop 3.-6. June 2013

Background

Background: Proton-driven PWFA experiment proposed at CERN:

- Use high energy proton beams to drive wake (plasma wave)
- Convert proton beam energy into e⁻ or e⁺ beam in a single stage

Caldwell et al., Nature Physics (2009); Lotov, PRST-AB (2010)

⇒ high gradient requires high density: $E_z \propto n^{1/2}$ ⇒ large wake requires resonance beam: $L_b \sim \lambda_p \propto n^{-1/2}$

$$E_{z,\max} \approx 3 \text{ GV/m} \left(\frac{N_b}{10^{10}}\right) \left(\frac{100 \mu \text{m}}{\sigma_z}\right)^2 \ln(\sigma_z/\sigma_r)$$

⇒ high accelerating gradient requires **short** bunches $\sigma_z \lesssim 100 \ \mu$ m ⇒ existing proton machines produce **long** bunches $\sigma_z \sim 10 \ cm$

• Use beam-plasma instability to modulated the beam at λ_p , driving large plasma waves for acceleration Kumar *et al.*, PRL (2010); Lotov, Phys. Plasmas (2011)

Courtesy of Carl Schröder, LBNL

Does this work ? →Dephasing ? →Hose instability ?

Why Experiments at PITZ?

Favorable circumstances

- Pure R&D facility (no users)
- Unique laser system (pulse shaper)
- Well developed diagnostics (high resolution electron spectrometer, etc.); soon: transverse deflecting cavity + dispersive section for longitudinal phase space measurements
- Possible contribution from PITZ:
 - Self modulation of electron beam
 - Later: High transformer ratio (needs bunch compressor)

Flexible Laser Pulse Formation at PITZ

- Photoinjector laser
- Developed and built by Max-Born Institute Berlin
- Key element: the pulse shaper
 - Contains 13 birefringent crystals. Pulses are split according to polarization. Delay is given by crystal thickness; relative amplitude can be varied freely by adjusting relative angle between crystals

Experimentally Demonstrated Pulse Shapes

> Driver + witness bunch

Modulated driver + witness bunch

> Modulated driver

> Multi bunches

3D PIC (Particle in Cell) Simulation of PITZ Experiment

Beam parameters	Setup 1
Total charge, pC	100
Longitudinal beam position, m	6.44
Horizontal rms beam size, um	42.0
Vertical rms beam size, mm	42.0
Bunch length in FWHM, mm	5.93
Average kinetic energy, MeV	21.5
Peak slice current, A	5.3
Horizontal rms emittance, mm mrad	0.372
Vertical rms emittance, mm mrad	0.372
Peak beam density, 10^13 e / cm^3	1.9

Expected energy modulation \approx 400 keV. PITZ beam energy spread as low as \approx 60keV. Resolution of TDS/HEDA2: 10keV and 100µm (Malyutin et al. "Simulation of the Longitudinal Phase Space Measurements With the Transverse Deflecting Structure at PITZ", *Proc. of IPAC 2012, MOPPP034* \rightarrow Measurable

DESY

Simulations: Alberto Martinez de la Ossa

Summary panel

Self modulation still well visible at 25% perturbation amplitude, strongly suppressed at 50%

Lithium Plasma Cell

> Principle:

- Evaporate Lithium in central pipe (700°C)
- Define beginning and end of Lithium zone with steep temperature gradient and Helium buffer gas
- Once pressure regions have stabilized:
 - Ionize Lithium gas with laser
 - Inject particle beam for PWA experiment

Figure from: P. Muggli et al. "Photo-Ionized Lithium Source for Plasma Accelerator Applications", *IEEE Trans. Plasma Science* **27** (1999), pp. 791-799

Ionization Laser for Plasma Cell Experiment at PITZ

	COMPexPro 201	CENTAURUS		COMPexPro 201	CENTAURUS
Manufacturer	Coherent	Amplitude	Pointing stability	$\pm 20~\mu$ rad	$\pm 2.5~\mu$ rad
Туре	ArF	Ti:Sa	Timing jitter	<100 ns	10 ns
Wavelength	193nm	785nm	Beam profile	Multimode 24mm x 10mm	Single mode M ² < 1.5
Repetition rate	max. 10 Hz	10 Hz	Dimensions	168x38x79 cm ³	165x120x30 cm ³ on optics table
Max. pulse energy	400 mJ	100 mJ → peak power 1 TW*	Periphery	Gas Panel	Electronics Rack
Pulse duration	typ. 25 ns	<100 fs (typ. 85 fs)	Price	86k€92k€	330k€350k€
Pulse to pulse stability	<1% rms	< 2% r ms	Lead time	23 months	56 months

 * Laser is modular – peak power can be increased to 2 TW by upgrading pump laser (30 k€)

Plasma Ionization – Side Coupling

- Independent optimization of electron and laser paths possible
- > Setup:

Ionization laser coupling: ArF

- Homogeneous plasma by single beam side coupling
- Increase plasma density by multiple passes
- Estimation:
 - Li density 10¹⁶ cm⁻³
 - Pulse energy 100mJ
 - Plasma channel: 1cm high, 6cm long
 - Need 3 to 4 passes to achieve plasma density of about 10¹⁵ cm⁻³

Time Plan for Plasma Cell Experiments (Self Modulation)

> Design of plasma cell	(could be preliminary)	ongoing – Jun 2013
 Mechanical structure inc 	luding gas feed, heating coils, water cooling	l
Plasma diagnostics		May – Jun 2013
 Vacuum feedthrough for 	temperature sensor	
Construction of plasma	a cell	Jul – Aug 2013
Setup of experiment in	lab	ongoing – Sep 2013
 Lithium filling 		
 Test of diagnostics 		
Lab experiments		Oct – Dec 2013
> Setup of experiment in	PITZ tunnel	Jan – Feb 2014
> Beamline experiments		Mar 2014 – Jun 2015
Requirements: Availabili	ty of	
Gun (Conditioning a	and Characterization work for FLASH, E-XFEL)	

• TDS (Startup, calibration)

