Longitudinal phase space tomography at the PITZ facility

- 1. Overview of the PITZ facility and motivation
- 2. High momentum measurements at PITZ
- 3. Idea of the tomography
- 4. Algebraic reconstruction technique (ART)
- 5. Simulation of measurements in ASTRA
- 6. Experimental data, reconstruction results
- 7. Conclusion

Dmitriy Malyutin

Forschungs seminar SS 2013 Humboldt-Universität zu Berlin 31st of May 2013

The Photo Injector Test facility, Zeuthen site (PITZ)

PITZ main parameters:

Bunch charge	1 pC 4 nC
Repetition rate	10 Hz
Beam energy after gun	1 7 MeV
Beam energy after booster	1 27 MeV
Number of bunches	1 800
Bunch spacing	1 us
Laser pulse temporal shape	2 ps Gauss 22 ps flat-top

Laser pulse train structure

Electron bunch characterization

Characteristic:	Originate from:
Bunch charge	Electron source
Bunch energy	Acceleration
Bunch transverse size	Emittance, transverse phase space
Bunch length	Energy spread, longitudinal phase space

Dmitriy Malyutin | FS SS 2013 | 31 of May 2013 | Page 3

- **1.** Overview of the PITZ facility
- 2. High momentum measurements at PITZ
- **3.** Idea of the tomography
- **4.** Algebraic reconstruction technique (ART)
- **5.** Simulation of measurements in ASTRA
- 6. Experimental data, reconstruction results
- 7. Conclusion

HEDA1 momentum measurements

Dispersion

$$D_{y} = \rho(1 - \cos(\theta)) + L_{d}\sin(\theta) = 2\rho$$

$$D_y = 0.6 m$$

HEDA1 momentum resolution, standard measurements

$$\sigma_{\delta} = \frac{\sigma_{y}}{D_{y}}$$

$$D_y = \rho(1 - \cos(\theta)) + Lsin(\theta) = 2\rho$$

$$\rho = 0.3 \ m \rightarrow D_y = 0.6 \ m$$

$$\sigma_{\delta} = \frac{0.72 \cdot 10^{-3}}{0.6} = 1.2 \cdot 10^{-3}$$

For 25 MeV/c beam
$$\rightarrow$$
 30 keV/c

HEDA2 momentum measurements

 $p = 6.7 Mev/c + 18 Mev/c \cdot cos(\varphi)$

Electron bunch mean momentum after the booster

- **1.** Overview of the PITZ facility
- **2.** High momentum measurements at PITZ
- 3. Idea of the tomography
- **4.** Algebraic reconstruction technique (ART)
- **5.** Simulation of measurements in ASTRA
- 6. Experimental data, reconstruction results
- 7. Conclusion

Tomography

We have unknown object f(x, y). We can measure projection of this object $p_{\theta}(r)$ at different angle θ . This is called tomography transformation.

Procedure to restore unknown object from set of projections is called inverse tomography transformation.

This procedures can be applied to the longitudinal phase space image.

Longitudinal phase space, 1 nC simulation

After gun (phase 0)

After booster (phase 0)

Simulated longitudinal phase spaces, 1 nC charge

Simulated electron bunch longitudinal phase spaces for different booster RF phases.

 $p = 6.7 Mev/c + 18 Mev/c \cdot cos(\varphi)$

$$\Delta p_z \approx +147 \frac{keV/c}{ps} \cdot sin(\varphi_0) \cdot \frac{\Delta z}{c}$$

Electron bunch mean momentum after the booster

Particle momentum gain by the booster relative to the mean momentum. Particle has position Δz within the bunch.

Longitudinal resolution estimation

Estimation of longitudinal resolution

$$\frac{dp}{dt} = +18 \cdot 2\pi f \cdot \sin(\varphi) = +147 \frac{keV/c}{ps} \cdot \sin(\varphi)$$

for 20° phase offset

$$\frac{dp}{dt} = 50 \frac{keV/c}{ps}$$

maximal momentum chirp

3 keV/c momentum resolution + 2 keV/c slice momentum spread \rightarrow 0.1 ps resolution ???

Tomographic reconstruction

Dmitriy Malyutin | FS SS 2013 | 31 of May 2013 | Page 15

Pros:

- Simple measurements via momentum phase scan
- > Quite high temporal resolution*
 - * 0.1 ps resolution ???

Cons:

- Sophisticated data treatment
- Not include 90° rotation

- **1.** Overview of the PITZ facility
- **2.** High momentum measurements at PITZ
- **3.** Idea of the tomography
- 4. Algebraic reconstruction technique (ART)
- **5.** Simulation of measurements in ASTRA
- 6. Experimental data, reconstruction results
- 7. Conclusion

Reconstruction algorithm (ART)

1. Represent 2D image as 1D array – g_l

 $p_z(z) = p_z(z) + k(\varphi) \cdot z$

$$p_{ij} = a_{ijl} \cdot g_l$$

i – phase (rotation)

j – momentum bin

Reconstruction algorithm, filling " a_{ijl} " array

$$p_{ij} = a_{ijl} \cdot g_l$$

$$p_z(z) = p_z(z) + k(\varphi) \cdot z$$

If φ_1 mean no rotation applied then $a_{1,1,4} = 1$, $a_{1,2,4} = 0$

If φ_2 mean rotation applied then $a_{2,1,4} = 0.3$, $a_{2,2,4} = 0.7$

Reconstruction algorithm, filling " a_{ijl} **" array**

$$p_{ij} = a_{ijl} \cdot g_l$$

 $p_z(z) = p_z(z) + k(\varphi) \cdot z$

more precise representation:

 $a_{2,1,4} = ???, a_{2,2,4} = ???, a_{2,3,4} = ???$

Reconstruction algorithm, iterations

$$g_q^{(k+1)} = g_q^{(k)} + \sum_{ij} \frac{a_{ijq} [p_{ij} - \sum_l a_{ijl} \cdot g_l^{(k)}]}{\sum_{nm} a_{inm}^2}$$

i – phase (Nphase)

- *j* momentum (Npz)
 - z coordinate (Nz)
- $q, l \text{image index} (NI = Npz^*Nz)$
- k iteration number

Npz*Nz*Nphase*Npz*(Npz*Nz + Npz*Npz*Nz) =

- Total calculation time is \sim = Npz³Nz²Nphase(1 + Npz) =
 - = Npz⁴Nz²Nphase

Convergence criteria

$$C(k) = \sqrt{\frac{\sum_{q} \left(g_{q}^{(k)} - g_{q}^{(k-1)}\right)^{2}}{q_{max}}} / max(g^{(k)}),$$

where q_{max} and $max(g^{(k)})$ are number of elements and maximal element in the reconstructed image $g^{(k)}$ respectively.

When C(k) becomes less than 10^{-3} we can stop iterations.

Simple reconstruction example, initial image

Reconstructed image, 1 iteration

Example, 10 iteration

Convergence

Dmitriy Malyutin | FS SS 2013 | 31 of May 2013 | Page 26

- **1.** Overview of the PITZ facility
- **2.** High momentum measurements at PITZ
- **3.** Idea of the tomography
- **4.** Algebraic reconstruction technique (ART)
- 5. Simulation of measurements in ASTRA
- 6. Experimental data, reconstruction results
- 7. Conclusion

ASTRA initial parameters

Beam emittance

Beam transport and phase spaces along beamline

Charge	1 nC
Laser	17.5 ps
BSA	0.4 mm
Main	377 A
Gun	6.68 MeV/c
Booster	22.4 MeV/c

Momentum phase scan, gun

Charge	1 nC
Laser	17.5 ps
BSA	0.4 mm
Main	377 A
Gun	6.68 MeV/c
Booster	22.4 MeV/c

Momentum phase scan, booster

Charge	1 nC
Laser	17.5 ps
BSA	0.4 mm
Main	377 A
Gun	6.68 MeV/c
Booster	22.4 MeV/c

Initial data for reconstruction

Charge	1 nC
Laser	17.5 ps
BSA	0.4 mm
Main	377 A
Gun	6.68 MeV/c
Booster	22.4 MeV/c
	Charge Laser BSA Main Gun Booster

ART reconstruction (ASTRA data)

- **1.** Overview of the PITZ facility
- **2.** High momentum measurements at PITZ
- **3.** Idea of the tomography
- **4.** Algebraic reconstruction technique (ART)
- 5. Simulation of measurements in ASTRA
- 6. Experimental data, reconstruction results
- 7. Conclusion

Experimental data, machine parameters, setup I

Charge	1 nC
Laser	17.4 ps
BSA	0.4 mm
Main	377 A
Gun	6.68 MeV/c
Booster	22.4 MeV/c

HEDA1 reference screen

Momentum resolution:

$$\sigma_{\delta} = \frac{0.57 \cdot 10^{-3}}{0.6} = 0.95 \cdot 10^{-3}$$

For 22.2 MeV/c beam \rightarrow 21 keV/c

Data from 14.02.2013 19:27:18, HEDA1 momentum scan

Initial data for reconstruction, HEDA1

ART reconstruction, HEDA1

DESY

Dmitriy Malyutin | FS SS 2013 | 31 of May 2013 | Page 38

HEDA1, 1 nC bunch charge, 80% of charge

Data from 14.02.2013 20:50:46, HEDA2 momentum scan

Initial data for reconstruction, HEDA2

ART reconstruction, HEDA2

HEDA2, 1 nC bunch charge, 80% of charge

Experimental data, machine parameters, setup II and III

 \rightarrow 3 keV/c

20 pC HEDA1 reference screen

Momentum resolution:

$$\sigma_{\delta} = \frac{0.136 \cdot 10^{-3}}{0.6} = 0.23 \cdot 10^{-3}$$

For 22.2 MeV/c beam

$$\rightarrow$$
 5 keV/c

Reconstructed phase spaces 100 and 20 pC

HEDA2 100 pC

HEDA2 20 pC

HEDA1 20 pC bunch charge

Longitudinal phase space, 80% of total charge Momentum distribution, keV/c 200 200 p_z, [keV/c], n = 128 100 100 p_z, [keV/c] 0 0 -100 -100 -200 -200 -3 -2 2 0.5 1.5 -1 0 3 0 2 1 z, [mm], n = 121 $\times 10^4$ Current distribution Slice momentum spread, 20 slices 12 2 10 1.5 8 σ_p, [keV/c] ľ, 6 4 0.5 2 0∟ -3 0∟ -3 -2 -2 -1 -1 0 2 3 0 1 2 3 1 z, [mm] z, [mm]

HEDA2 20 pC bunch charge

Dmitriy Malyutin | FS SS 2013 | 31 of May 2013 | Page 47

Longitudinal profiles at 8.92 for 20 pC bunch charge

Magenta line – laser profile (17.5 ps FWHM) Red line – simulated bunch profile for 20 pC Blue line – measured bunch profile for 20 pC

Longitudinal profiles at 8.92 for 1 nC bunch charge

Magenta line – laser profile (17.5 ps FWHM) Red line – simulated bunch profile for 1 nC Blue line – measured bunch profile for 1 nC

- **1.** Overview of the PITZ facility
- **2.** High momentum measurements at PITZ
- **3.** Idea of the tomography
- **4.** Algebraic reconstruction technique (ART)
- **5.** Simulation of measurements in ASTRA
- 6. Experimental data, reconstruction results
- 7. Conclusion

Conclusion

- Simulation of the measurements in ASTRA gives results very close to the expected ones. This prove the idea of the longitudinal phase space measurements with the described tomography technique.
- The measured electron bunch longitudinal profiles show the similar shapes to the cathode laser temporal profiles. This demonstrates that the photo cathode has the short response time, less than ps.
- The measured electron bunch length for the 20 pC charge is shorter than the cathode laser pulse, what also can be seen in the ASTRA simulation.
- The measured electron bunch length for the 1 nC charge as well as simulated one is longer than the cathode laser pulse.

