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Abstract

At the Photo Injector Test facility in Zeuthen (PITZ), electron sources are developed,
that meet the high demands of modern scientific light sources like Free Electron
Lasers (FEL). Here, the transverse emittance is a key parameter. The transverse
emittance at the time of emission acts as a lower limit and is decisively determined
by the intensity distribution of the cathode drive laser.

In this work, an algorithm for the characterization of the transverse intensity
distribution of the PITZ cathode drive laser is developed. Various methods for
automatically locating the laser spot and defining an Area of Interest (AOI) are
compared. With this, a number of parameters for the characterization of the inten-
sity distribution are presented and discussed. Among those are statistical quantities
like the spatial correlation as well as various options for Fourier and Fourier-Bessel
transforms.



Zusammenfassung

Am Photoinjektor-Teststand in Zeuthen (PITZ) werden Elektronenquellen entwi-
ckelt, die den hohen Ansprüchen moderner Forschungslichtquellen, wie Freie-Elek-
tronen-Laser (FEL), genügen. Dabei ist die transversale Emittanz ein Schlüssel-
parameter. Die transversale Emittanz der Elektronenpakete unmittelbar nach der
Emission stellt eine untere Schranke dar und wird maßgeblich durch die Intensitäts-
verteilung des Kathodenlasers bestimmt.

Im Rahmen dieser Arbeit wird ein Algorithmus zu Charakterisierung der trans-
versalen Intensitätsverteilung des PITZ-Kathodenlasers entwickelt. Verschiedene Me-
thoden zum automatischen Lokalisieren des Laserpunktes und zur Definition einer
Area of Interest (AOI) werden verglichen. Darauf aufbauend wird eine Reihe von
Parametern zur Charakterisierung der Intensitätsverteilung vorgestellt und disku-
tiert, darunter statistische Größen wie die räumliche Korrelation sowie verschiedene
Möglichkeiten der Fourier- und Fourier-Bessel-Transformation.
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Chapter 1

Introduction

Free electron lasers (FELs) play a more and more important role in photon science.
Their applications range from condensed matter and surface physics to chemical
and biological studies. The advantages of FELs over classical photon sources like
synchrotrons are much higher pulse intensities with femtosecond short pulses of
coherent radiation. Unlike conventional lasers, no active medium is needed for lasing.
Instead, the radiation is produced by relativistic electrons, which not only allows for
tunable photon wavelengths, but also wavelengths in the far UV and even the X-ray
spectrum, which would destroy conventional laser mediums. However, operating in
those regimes puts great challenges on the electron beam production.

Current and next generation FELs operating in the X-ray regime require high
brightness electron beams [1]. This is achieved by producing high peak currents
while keeping the transverse emittance low. A promising approach to accomplish
this are photo injectors, where electrons are emitted from a cathode using a laser. At
the Photo Injector Test facility in Zeuthen (PITZ), photo injectors for the existing
FLASH and upcoming XFEL projects are developed, optimized and characterized,
with an emphasis on emittance reduction.

The emittance is defined as the volume of a particle distribution in the 6D phase
space [x, y, z, px, py, pz]. With z chosen to be the beam axis, the transverse emittance
is the particle volume in the 4D space [x, y, px, py]. The normalized transverse rms
emittance of a distribution of particles is defined as

εx = βγ
√
σ2
xσ

2
x′ − cov2(x, x′) (1.1)

and εy accordingly, with β = v/c the ratio of particle speed and speed of light and γ
the relativistic factor. x is the transverse offset from the beam axis of the individual
particles and x′ = px/pz is the ratio of the particle momentums perpendicular to the
beam axis px and along the beam axis pz. The factor βγ ensures that ε is invariant
under acceleration along z. σx and σx′ are the standard deviations of the mentioned
parameters. In the following, “emittance” will refer to this normalized transverse
rms emittance definition.

There are three main contributors to the emittance of an electron beam: the
thermal emittance εth, which is the emittance of the electron bunch right after
emission, and the emittance growth due to space charge forces εsc and RF defocusing
εRF [2]. Assuming these contributors are independent, the total transverse emittance
can be approximated by

ε ≈
√
ε2th + ε2sc + ε2RF (1.2)
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[3]. Since the emittance is only growing, the thermal emittance sets a lower limit
to the total beam emittance, which makes it one of the key parameters in emittance
optimization.

At the cathode surface, x and x′ are uncorrelated, so the thermal emittance can
be described by

εth,x = 1
mec

σxσp (1.3)

since βγ = p
mec

and σx′ = σp

p
with σp the transverse rms momentum. In a simple

model, electrons are emitted isotropically into a half-sphere in the vacuum [4]. The
momentum distribution of mono-energetic particles calculated from this model is
a function of the electron affinity, band gap energy and final state energy of the
electron excitation, with the latter being dependent on the band structure of the
cathode material and the wavelength of the cathode drive laser alone [5]. This
means, once cathode material and laser wavelength are chosen, little can be done
to tune the momentum distribution. Thereby, the thermal emittance is essentially
determined by the rms laser spot size σx. Unfortunately, σx cannot be reduced to
any desired value, because the smaller the spot size, the higher is the space charge
density and thus the space charge forces which, in turn, increase the emittance.
Thus, choosing σx must always be a compromise between thermal emittance and
space charge induced emittance growth. Here it emerged, that for a given σx, the
emittance growth is lowest, if the charge is distributed homogeneously, i.e. the
transverse charge density distribution has a flat-top profile and the space charge
forces are linear [6].

In the past, simulations where conducted, to estimate the impact of charge inho-
mogeneities at the cathode surface [7, 8, 9, 10]. In these simulations, initial flat-top
distributions where modulated with sine and cosine functions described by the for-
mulas

q = q0 · [1 + d cos (knx)] · [1 + d cos (kny)] and (1.4)
q = q0 · [1 + d sin (knx)] · [1 + d sin (kny)] (1.5)

with x2 + y2 < R and kn = 2πn
R

for n = 0.5...4. All these studies came to similar
results. While it is obvious, that the emittance growth is larger for larger values of d
(with respect to q0), it is also highly dependent on n. The results have shown, that
inhomogeneities with high spatial frequencies n (i.e. small scale inhomogeneities)
have a lower emittance growth compared to the ideal flat-top, than low frequency,
large scale distributions, despite having the same modulation depth d. This is due
to a stronger distortion of the beam shape for the low frequency distributions, while
the high frequency distributions show a partial compensation of the inhomogeneities
along the drift [7,8]. Some simulations also suggested, that charge distributions with
the center of gravity different from the geometric center of the bunch (“asymmetric”
distributions) have the severest impact on the emittance [10]. Simulations with radi-
ally symmetric distributions also showed large emittance increase for charge density
maxima located off-center, while for distributions with a single maximum at the
center, the emittance decreased to a certain degree. In the later case, non-linearities
in the space charge forces within the bunch, that normally increase the emittance,
are compensated by the smaller rms size of the distribution. However, most of the
studies were exemplary and conducted for unrealistic charge distributions.
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To allow for more detailed studies with more realistic conditions, this work aims
to quantify characteristics of the actual charge distributions produced in the PITZ
gun. The actual charge distribution is the product of the intensity distribution of the
cathode drive laser and the quantum efficiency distribution of the cathode material.
Unfortunately, no high resolution studies of the quantum efficiency distribution exist.
For this reason, only the intensity distribution of the laser will be used as a measure
of the charge distribution.
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Chapter 2

The Photo Injector Test facility in
Zeuthen (PITZ)

2.1 The photoinjector beamline
At PITZ, the electrons are generated by photoemission from a cathode illuminated
by a pulsed UV drive laser of 457.5 nm wavelength. The cathode is Cs2Te evaporated
onto a molybdenum plug and has a thickness of ≈ 20 nm [4]. Since Cs2Te is a
semiconductor, it has a high Quantum efficiency of about 10% at the used laser
wavelength [5, 11], which makes it a very efficient electron source. The cathode
must be kept under ultra high vacuum conditions of 10−10 mbar to avoid poisoning
by oxygen and carbon dioxide.

The PITZ gun is a normal conducting 1.6 cell L-band copper cavity operating at
1.3 GHz (Fig. 2.1). The RF power is provided by a 10 MW klystron and fed into the
gun by a coaxial coupler. The maximum field gradient is ≈ 60 MV/m. Electrons
leaving the gun cavity can reach energies of up to 6.7 MeV. The cathode is located
in the half cell to allow for an efficient acceleration of the emitted electrons. Two
solenoid are located around the gun: the main solenoid acts as a focusing lens and
compensates emittance growth due to space charge forces. The bucking solenoid
is compensating the magnetic field of the main solenoid at the cathode plane to
avoid emittance growth induced by a residual angular momentum of the emitted
electrons [12].

The complete PITZ setup (version PITZ 2.0) is shown in Fig. 2.2. Three disper-
sive sections, each made up of a dipole and a subsequent screen station, allow for
momentum distribution measurements. Bunch length and longitudinal phase space
measurements can be conducted at stations equipped with Cherenkov radiators and
a streak camera. The booster cavity, a 9 cell copper cavity, accelerates the bunches
to a maximum energy of ≈ 25 MeV. After the booster, two EMittance Measure-
ment SYstems (EMSY) are installed. They can measure the emittance via slit scan
method separately in x and y. Applying off-crest acceleration in the booster, an
energy chirp along the bunch can be produced, such that the longitudinal momen-
tum of the electrons can be correlated with their position in the bunch. This way,
the bunch can be cut into longitudinal slices by the 180◦ dipole after EMSY2 and
a slit. The horizontal emittance of the slices can be measured by the slit scan or
the quadrupole scan method. The phase space tomography module (PST) located
11.5 m downstream the cathode enables to measure the beam emittance using the
tomographic reconstruction [13]. Unlike the EMSY stations, the PST module can

4
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Figure 2.1: Electron gun setup at PITZ

Figure 2.2: Schematic layout of the PITZ 2.0 beam line
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measure x- and y-emittance simultaneously and with a better resolution. The trans-
verse deflecting structure, a 3 GHz RF cavity located before the PST, will, together
with a fast kicker magnet, enable slice emittance measurements and slice momentum
distribution measurements of single bunches at the last dispersive section (DISP3).
After the third dispersive section, the beam is brought back into the original beam
line and sent to the beam dump.

2.2 The PITZ Laser system
The PITZ photocathode laser was developed at the Max-Born-Institute, Berlin [14].
It consists of a Yb:YAG laser oscillator with several Yb:YAG amplification stages
lasing at 1030 nm wavelength, producing micro pulses at 1 MHz repetition rate. The
pulses are organized in pulse trains of up to 800 single pulses with 10 Hz repetition
rate (Fig. 2.3). The Gaussian temporal shape of the single pulses is transformed
into a flat-top pulse by a pulse shaper comprising 13 birefringent crystals. The flat-
top pulses have a FWHM duration of up to 22 ps with rise and fall times of ≈ 2
ps. When entering a birefringent crystal in the pulse shaper, the Gaussian pulse
is split into two pulses with perpendicular polarizations. Since both pulses have
different refractive indices, they propagate at different speeds, resulting in a temporal
separation determined by the thickness of the crystal. By successively repeating this
step, multiple Gaussian profiles are overlayed to form a flat-top profile [14].

After the amplification stages the infrared light is converted to the ultraviolet
by two successive frequency conversion crystals (LBO and BBO), each dividing the
incoming wavelength by two to the output wavelength of 257.5 nm. The intensity
of the laser can be tuned via a rotatable half-wave plate followed by a birefringent
crystal used as polarizer. The maximum pulse energy of the UV pulse is ≈ 10
µJ. The temporal profile of the pulse is monitored in the Optical Sampling System
(OSS) by using a cross-correlation method scanning the UV pulse with the original
IR pulses. The resolution of this method is about 2 ps.

2.3 Laser beam line and diagnostics
From the laser room, the beam is transmitted over a distance of 13.0 m into the
accelerator tunnel, magnifying and imaging it on the Beam Shaping Aperture (BSA).
The BSA - initially consisting of a set of exchangeable plates with holes of fixed
diameter but later replaced with a remotely controlled iris diaphragm - cuts out the
central part of the transverse distribution. Since the original transverse distribution
is shaped Gaussian like, the beam needs to be magnified such that the cut-out part
is almost a flat-top distribution. However, there needs to be a compromise with the
lost energy at the BSA. By changing the diameter of the BSA the laser power at the

100 ms
1μs

up to 800 pulses

t

Figure 2.3: Time structure of the cathode laser
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Figure 2.4: Schematic view of the PITZ Laser system. Illustration by I. Will (MBI)

photocathode - and thereby the charge extracted from the photocathode - can be
controlled. Depending on the desired charge, the BSA diameter is usually between
100 µm and 1500 µm.

After the BSA a setup of four lenses is imaging the beam onto the cathode with
unit magnification over a distance of 6.9 m. Fig. 2.5 shows a schematic view of the
laser diagnostics assembly. Shortly after the lens system, a crystal wedge reflects a
small percentage of the laser intensity towards the PCO camera, which contains a
CCD chip preceded by a photocathode, multichannel plate (MCP) and a phosphor
screen. With the accelerating voltage between photocathode and MCP acting as a
shutter, the shutter time is much smaller than the usual readout time of CCD chips.
This makes measurements of single micro pulses possible, e.g. position and position
jitter, beam size and beam size jitter, as well as energy stability. The position of
the laser spot on the photocathode and the incident angle can be changed by two
mirrors M5 and M6. A quartz wedge permanently reflects a part of the laser light
towards various diagnostics, including a quadrant diode (QD) to measure the beam
position stability, photo multiplier tubes (PMT), a photo diode (PD) for laser pulse
energy measurements and a CCD camera. The CCD camera has the same optical
path length as the photocathode and therefore measures the transverse intensity
distribution at a plane equivalent to the cathode plane. Hence it is named Virtual
Cathode (VC1). Since the front and back side of the quartz wedge have reflectivities
of only ≈ 4 %, VC1 can only be used in the high intensity regime or for a large
number of micro pulses. Another Virtual Cathode (VC2) can be used on demand
by moving a mirror into the beam line, and is used in the low intensity regime [10].

All beam images used in this work where taken from VC2, a CCD camera of type
JAI Pulnix TM1405-GE OP21-1UV with a resolution of 1392 x 1040 pixels and a
pixel size of 4.65 µm x 4.65 µm. The CCD camera at VC1, type JAI M10 SX, does
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Figure 2.5: Schematic view of the assembly of the laser diagnostics after the BSA.

not only have a lower resolution and larger pixel size, but it also showed blooming
issues even with the relatively low intensities reflected by the quartz wedge, and
therefore was not used.
The cameras are synchronized with the timing system of the photo injector and are
operated via a specially designed, TINE based video system [15]. Since the VC2
camera has a read-out rate of only 30 Hz, only single pulses were used, in order to
avoid overexposure and blooming. For statistical reasons, one measurement includes
several individual images (usually 10, sometimes 20 or 30) of single pulses, each in
a separate pulse train. Every image is saved separately. This procedure is repeated
without sending the laser beam onto the virtual cathode for background subtraction.

The analysis in this work is done with MATLAB. The PITZ standard algorithm
was used to convert the image files into MATLAB matrices: For the pixel values of
the individual images, the mean was calculated

v(i, j) = 1
NI

NI∑
n

vn(i, j) (2.1)

with vn(i, j) being the pixel value at (i,j) of the nth individual image and NI the
number of images. For every pixel of the background image, the highest of the pixel
values of the individual background images was chosen:

b(i, j) = max
(
b1(i, j), b2(i, j)...bNI

(i, j)
)

(2.2)

with bn(i, j) the pixel value at (i, j) of the nth individual background image. The
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Figure 2.6: Typical imaging errors: diffraction patterns can be seen in all three images,
as well as dust. The laser spot in the center shows an irregular edge due to the iris opening
not being perfectly round, for the right spot the BSA was not illuminated homogeneously.
All laser images in this work will use the same color scale, so it will not be shown in further
illustrations.

final image was then calculated as

a(i, j) = v(i, j)− b(i, j) (2.3)

with subsequently all pixel values < 0 being set to zero. This procedure makes sure
that any systematical background is eliminated but on the other hand cannot deal
with background noise. In fact it is likely that the statistical noise of the non-zero
pixels is even larger since the zeroing does not compensate the subtraction of a
random value here. However it will be shown that background noise and statistical
uncertainties of the pixel values are a minor effect.

2.4 Analysis of the transverse laser profile
Although the BSA cuts out a very small part of a very broad Gaussian like distribu-
tion, the resulting image on the virtual cathode is everything but smooth. Typical
imaging errors can be seen in Fig. 2.6.

• The right laser spot is highly asymmetric because the BSA is not illuminated
homogeneously. This problem occurs mainly for large BSA diameters when no
homogeneous, large region can be found in the original intensity distribution.

• The laser spot in the center shows irregular edges, typical for the use of a BSA
where the blades of the iris do not form a perfectly round aperture.

• Due to constructional restrictions the cameras are pointing upwards, allowing
deposition of dust. The same applies for other optical elements such as mirrors
and lenses. The dust can be seen as more or less prominent dot, partly just
a diffraction pattern (small grains) and partly as a completely unilluminated
area (larger grains). These measurement artifacts do not necessarily occur in
the intensity distribution at the photocathode.

However, the most prominent structures on the laser spots are the concentric diffrac-
tion patterns. With perfect imaging, these patterns would not appear, since the lens
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Figure 2.7: Calculated diffraction patterns with homogeneously illuminated BSA and
aperture in the center (left), with linear intensity gradient in x and aperture shifted off-
center in y (right).

system would image the intensity distribution at the BSA on the camera. Unfortu-
nately, the imaging is restricted by the aperture size of the optical components of
the laser beam line. This can be explained with Fourier optics: after the BSA, the
beam diverges due to diffraction. The focusing of the lens system simply reverts this
process. Mathematically, this can be described as two successive Fourier transforms
that, of course, should reproduce the original intensity distribution. Unfortunately,
the aperture size of the laser optics is only 3 inches at some points of the beam line
and therefore cuts outer parts of the divergent beam [16].

The effect of this can be demonstrated in a simple example, where the limiting
aperture is at the Fourier plane (i.e. the plane where the intensity distribution of
the diffracted beam is exactly the Fourier transform of the distribution at the BSA).
Two calculated beam images can are shown in Fig. 2.7. In both cases a circular
initial distribution was Fourier transformed. The initial distribution on the left was
a perfect flat-top while on the right, a linear intensity gradient was used. On the left
side, the resulting image was cut by a centric, round aperture, on the right side, a
rectangular, off-center aperture was applied. Both images where then again Fourier
transformed, resulting in the shown distributions. The calculated images describe
some measured distributions quite well but must be considered as a simplified model
since the limiting aperture is not at the Fourier plane, so the cut distribution is not
exactly the Fourier transform. In fact, the intensity is cut at several locations. While
the Fourier plane is in the middle of the four lens system, most intensity is cut by
the third and fourth lens. The number of rings on the flat-top profile as well as their
intensity depend on the number of diffraction orders cut by the aperture. More
transmitted diffraction orders result in more rings of smaller intensity.

It should be noted, that recent tracking simulations of the laser beam have shown,
that the vacuum mirror (see Fig. 2.1) is also restricting the beam diameter [17].
Since this limiting aperture is located behind the mirrors to the virtual cathodes, its
impact cannot be seen in the images delivered by the VC cameras. The simulated
effects are noticeable at BSA sizes smaller than 500µm, but only get severe for BSA’s
below 100µm. Since the laser spots lose their flat-top character for BSA sizes below
400µm due to the 3 inch optics anyway, this effect can be neglected.
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Figure 2.8: From left to right: original laser spot, rms map and gradient map. The color
scale of the gradient map was chosen arbitrarily for a better comparison with the rms map.

The fact that every measurement comprises 10 or more images makes it possible
to do a statistical analysis of the resulting image which is simply the pixelwise
mean of the single images (ignoring the background subtraction). By calculating
the standard deviation of any pixel, i.e.

σv(i, j) =

√√√√ 1
NI

NI∑
n

(
vn(i, j)− v(i, j)

)2
(2.4)

with the parameters as in equation 2.1, the resulting images (in the following called
rms maps) represent the distributions of variance. For most kinds of statistical
distribution of the pixel values vn(i, j) (e.g. Poisson distribution, for CCDs probably
percentage error), a larger pixel value implies a larger standard deviation. However,
when comparing the laser spots with the rms maps this is not the dominant factor,
as can be seen for an exemplary spot in Fig. 2.8(a) and 2.8(b). The area around the
center of the laser spot has a relatively high intensity but the rms is significantly
lower than at the edges with similar intensity. Also, overlaying both images reveals
that the position of the rings of higher rms do not match the diffraction pattern
intensity of the laser spot. Instead it seems to match the flanks. To verify this,
the numerical gradient

√(
∂I
∂x

)2
+
(
∂I
∂y

)2
was calculated for every pixel in the laser

spot (after smoothing). The resulting gradient map can be seen in Fig. 2.8(c).
Overlaying with the rms map shows a good match. Apparently a high rms comes
with a high gradient in intensity. This can be explained by the laser position jitter,
as seen in Fig. 2.9.

For a jitter magnitude significantly smaller than the described feature, the change
in the pixel values (according to the length of the blue arrows) is much smaller at
the point of highest intensity than on the flanks of the feature.

Measurements have shown that the magnitude of laser jitter significantly in-
creases in the vertical section of the beam line (the laser shaft) located between the
laser room and the tunnel, while it remains almost constant after the BSA [18]. It
was therefore concluded that the laser jitter is mainly caused by mechanical vibra-
tions of the mirrors and airflow in the shaft. The transverse jitter of the laser beam
before the BSA can be neglected since this would primarily change the intensity
of the diffraction pattern on the cathode but not its position. Therefore the jitter
that is seen on the rms maps comprises the resulting angular jitter and the relative
transverse position jitter between BSA and cathode (or virtual cathode).
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Figure 2.9: Laser jitter causing a high rms at the flanks of the feature and a low rms on
top.
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Figure 2.10: From left to right: original laser spot, rms map and gradient map. Note
how structures of the rms map and gradient map correspond in position but not in height.
In this case the laser beam jitter occurred mainly in along the y axis, therefore the high
gradients on the right and left side of the laser spot contribute only marginally to the rms.

It becomes apparent that the structures on the rms map and gradient map match
in position but not necessarily in relative height. This is probably caused by the
direction of the beam jitter. The gradient map is calculated by Pythagorean addition
of the gradients in x an y direction and can therefore be considered the greatest rate
of increase at this location. If the beam jitter has a different (mean) direction than
this gradient, the latter will not contribute to the rms to its full extent. An extreme
can be seen in Fig. 2.10, where the beam jitter mainly occurred along the y axis.
The rms values on the right and left side are rather small, because the gradient
direction is perpendicular to the main direction of the jitter.

It should be noted that these findings apply only to the images taken with the
CCD camera. For single pulses of ≈ 20 ps length, the mirrors can be assumed to be
static since the period of mechanical oscillations can be assumed to be on a much
larger time scale. On the other hand, most measurements at PITZ use more than
one pulse and take much more time than seconds, so the rms maps might describe
the uncertainties quite well.
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In addition to the assumed percentage error, CCD cameras have intrinsic noise.
Due to local heating of the chip, the measured intensity becomes higher than the real
intensity. Since the change depends on the intensity, this systematic error cannot
be eliminated with the background subtraction. Neither can it be estimated by
statistical considerations, so no corrections can be applied.
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Chapter 3

The Area of Interest

To analyze the laser spots it should first be considered, which parts of the dis-
tribution should be included in the analysis. As can be seen in exemplary laser
images, the shape of the distribution is far from being flat-top. Not only the to-be
analyzed modulations of the top play a role here. Also the flanks are not sharp
edges as expected from a flat-top, but are rather broad. This will lead to problems
when calculating characterization parameters like a standard deviation: including
the flanks will bias the calculation of the mean towards lower values. Depending on
up to which point the flanks are included, the mean will be more or less significantly
lower than the ’flat-top’ part of the distribution, decreasing the significance of the
resulting standard deviation (especially since the deviation at the flanks will still
be very high). If, on the other hand, an rms error is applied instead of a standard
deviation (i.e. not the deviation from the mean but from an arbitrary function)
the flanks will be posing a problem as well. It is very unlikely that a function is
found, that describes the flanks perfectly. Due to flanks usually being very steep,
the deviations occurring here will be very large and will thereby strongly affect the
rms value. Of course the flanks are non flat-top features of the distributions and
therefore need to be characterized. Nevertheless the influence on the rms largely
depends on the function describing the flanks and is therefore a poor measure for
this purpose. Furthermore, modulations on the flanks are likely to have a much
smaller influence on the emittance than the shape of the flanks itself.

For these reasons it is rational to analyze flanks and flat-top part separately. To
do this, an area of interest (AOI) needs to be defined. Also it is imperative to find
this AOI automatically. If human interaction is necessary for AOI definition (e.g.
defining the center/size of the spot or of the AOI), results for the characterization
parameters depending on the AOI will not be reproducible, thereby reducing their
sensitivity and significance.

For the following studies on AOI definition, a set of 280 laser images taken
between 23 March 2011 and 1 February 2012 was used.

3.1 One-dimensional approach
In a first approach, a procedure was tested that only uses one-dimensional arguments
to find the AOI. To define the center and the borders, the matrix representing the

14



x [pixels]

p x[a
.u

.]

39 98 156
0

0.2

0.4

0.6

0.8

1

y [pixels]

p y[a
.u

.]

38 95 151
0

0.2

0.4

0.6

0.8

1

x [pixels]

gr
ad

(p
x) 

[a
.u

.]

39 98 156

-1

0

1

y [pixels]

gr
ad

(p
y) 

[a
.u

.]

38 95 151

-1

0

1

Figure 3.1: Projections of the laser spot in x and y and the corresponding gradients below.
The gradients have a distinctive, more or less antisymmetric shape.

laser spot a(i, j) was projected onto the x- and y-axis, respectively:

px(i) =
∑
j

a(i, j) (3.1)

py(j) =
∑
i

a(i, j) (3.2)

The gradient of these projections has a distinctive shape as illustrated in Fig. 3.1.
As an initial attempt, the x and y values with the highest and lowest gradients

were used as the boundaries of the AOI. The coordinate of the center was assumed
to be exactly at the middle between these boundaries. The halve of the distance
between the boundaries was taken as the radius. This shows a first weakness of the
one-dimensional approach: the radius obtained in x will not be the same as in y.
There is no way to decide which radius should be used. Averaging both radii can
be a solution.

In this first attempt, large grains of dust covering large areas of the CCD chip had
notable influence on the projections and their gradients. For the spot in Fig. 3.2 the
intensity drop is large and steep enough to, even in the projection, produce a gradient
larger than the flank gradient. This fatally effected the deduced AOI, making the
AOI definition unreliable. This issue was solved by smoothing the gradients with a
smoothing window of ±5 pixels.

Another problem are rather broad gradient peaks, possibly with multiple local
maxima. Here it is not clear, where to set the boundaries. Depending on where the
absolute maximum of the peak is located, the AOI can be shifted significantly. Fig.
3.3 shows such a laser spot. Attempts have been made to solve this problem by
fitting the gradients and using the extrema of the fit function. Several combinations
of tailed distribution functions roughly resembling the gradient images have been
tested. This usually comprised one function for the positive and one for the negative
part. Combinations of two Weibull distributions, Giddings peak functions and log-
normal distributions were tested. However, while the Weibull functions could not
produce any fit results at all, the results for the other functions where not satisfying.
Attempts with single, symmetric fit functions treating the gradients as a whole,
instead of separating positive and negative part, failed for gradients as shown in
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Figure 3.2: Laser spot with a blue circle marking the AOI (left), projection in x and
corresponding gradient (right). Note how the center of the AOI is shifted due to the intensity
drop caused by dust. In this case the radius obtained in y was applied.
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Figure 3.3: Laser spot with a blue circle marking the AOI (left), smoothed projection in
x and corresponding gradient (right). The rather broad left peak in the gradient diagram
with its maximum on its right shifts the AOI notably to the right.
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Figure 3.4: Gradient in x for a spot with remarkably asymmetric diffraction pattern. The
asymmetry prevented fitting with a single, symmetric function.

Fig. 3.4, due to the significant asymmetry. All in all, fitting the gradients produced
no reliable results.

Upon closer examination, the exact positions of the maximum gradients seem to
be determined by the diffraction pattern. If the diffraction pattern is asymmetric,
the obtained center and limits of the AOI will be shifted accordingly. This can be
seen in Fig. 3.5. While the underlying intensity distribution is rather homogeneous,
the diffraction pattern in the lower part of the laser spot is higher than in the upper
part. The gradient shows none of the problems discussed above, but a cut through
the laser spot along y axis reveals that the AOI is shifted upwards anyway.

This is undesirable since the inhomogeneities on the underlying, ideally flat-
top distribution have to be analyzed. Therefore the AOI should be defined by
this distribution and not by the inhomogeneities. Otherwise the AOI can change
significantly with a change in the diffraction pattern, thereby possibly making the
results incomparable although the underlying distribution has not changed at all.
This obviously cannot be achieved by a simple one-dimensional approach. The
lessons learned from this, call for an approach, where the underlying distribution
is the major factor in defining the AOI. This can only be done in two dimensions,
where no axes play a special role like x and y axis in the one-dimensional approach.
A powerful tool that meets these requirements is the fitting of a given 2D function
to the laser intensity distribution. This will be the subject of the following section.
However, despite its shortcomings, the gradient method has proven to be reliable
and fast enough to serve as an initial guess for the two-dimensional fitting.

Before the two-dimensional fitting is discussed, an even more simple approach
must be ruled out. One can argue, that the AOI could simply be defined with a
threshold. Pixels with a value above the threshold would be part of the AOI, pixel
values below would be excluded from analysis. The problem with this method is the
definition of the threshold. A simple percentage of the maximum pixel value must
be ruled out since the diffraction pattern can attain values more than two times the
height of the underlying distribution. Also the underlying distribution itself can be
highly asymmetric, thereby excluding parts of it. Sometimes even the diffraction
pattern of dust grains can determine the scaling of the intensity height with just a
few pixels. Examples can be seen in Fig. 3.6. The threshold therefore would need to
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Figure 3.5: Laser spot with a blue circle marking the AOI (left), projection gradient in y
and cut through the spot with center and AOI limits marked (right). Note how the limits
are obviously determined by the diffraction pattern and not by the underlying intensity
distribution. Since the inhomogeneity of the distribution has to be characterized, this is
undesirable.
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Figure 3.6: Laser spots with different ratios of underlying and maximum intensity. From
left to right: high diffraction pattern on one side, dust causing immense intensities in few
pixels around the covered area, relatively flat inhomogeneities. The differences can be
deduced from the varying color scaling.

be low compared to the maximum. With this, the ratio of underlying distribution
and diffraction pattern has a large impact on the extend to which the flanks are
still part of the AOI. Relatively homogeneous laser spots would still include large
parts of the flanks. If, on the other hand, the threshold is scaled on the basis of
an average intensity, the area contributing to this average needs to be defined. An
AOI begets an AOI, which just adds another iteration to the problem. All in all, a
threshold is impractical and the results would vary widely concerning the exclusion
of the flanks.

3.2 Two-dimensional fitting
With the one-dimensional approach producing unsatisfactory results, the two-dimen-
sional approach aims to avoid the problems that occurred. As discussed above, this
means the AOI must be determined mainly by the underlying intensity distribution
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while the inhomogeneities have to play a minor role or no role at all. The best way
to do this is by using a fit function that only describes a flat-top distribution.

The simplest fit function would be the ideal case, a flat-top function with the
edges defined by the unit step function (or Heaviside step function):

fSt(r) = A ·H(r0 − r) = A ·

0 : r > r0

1 : r ≤ r0
(3.3)

with r =
√

(x− x0)2 + (y − y0)2, (x0, y0) the coordinate of the center and r0 the
radius of the flat-top distribution. This, however, has one major disadvantage. The
actual laser spots do not have sharp edges but rather broad flanks. With fSt as a fit
function, r0 would be chosen to be approximately at the middle of the flanks. The
original aim of the AOI, the exclusion of the flanks can not be achieved by using
r0 as the radius of the AOI. It is also impossible to reduce r0 by the width of the
flanks, since no information on the flanks is obtained. Therefore a fit function has
to be found, that has variable flanks, preferably defined by a free fit parameter.

One possible candidate is the Fermi-edge like function

fF (r) = A

exp r−r0
T

+ 1 (3.4)

The parameter A again just gives the height of the fit function, while T is a measure
of the width of the flanks. There is no physical reason to use this kind of function,
but it has a variable shape resembling the flanks of the laser spot. Also it is quite
easy to estimate the width of the flanks with the standard approximation of 4T .
This can be deduced from the Taylor expansion of fF (r) around r = r0:

fF (r) = A

2 −
A

4T · (r − r0) +O
(
(r − r0)2

)
(3.5)

Since fF (r) can only have values between 0 and A, the linear approximation only
works within an interval of r− r0 ∈ [−2T, 2T ]. With this approximation, the radius
of the AOI was chosen to be r0 − 2T which crops large parts of the flanks.

For the fitting of the laser intensity distribution, the MATLAB function lsq-
curvefit was used. This function applies the least squares method with the default
algorithm being the trust-region-reflective-algorithm. In Fig. 3.7 one of the
laser spots discussed above can be seen with the AOI determined by fitting with
fF (r). The AOI is not shifted in y anymore, as it was with the one-dimensional
approach. It does however look shifted in x. This is due to the flanks not having
the same width on both sides. As a consequence, the diffraction pattern is not
concentric with the AOI, on the right side larger parts are cut away than on the
left. This problem cannot be solved without adding significant complexity to the fit
function, which would also reduce its reliability.

Since elliptical laser spots have occurred in earlier setups, the shape of the AOI
was changed from circular to elliptical. The elliptical shape was probably caused
by reflections in the crystal wedges or by inhomogeneities in the conversion crystals
caused by radiation damage. Unfortunately, no such spots could be provided, to be
included in this work. To describe the ellipse, the implicit definition

(
x− x0

σx

)2
+
(
y − y0

σy

)2

− 2σxy
σ2
xσ

2
y

(x− x0)(y − y0) = E(x, y) (3.6)
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Figure 3.7: The same laser spots as in Fig. 3.5, this time with the AOI obtain by fitting
(left), cuts along x and y axis through the center of the AOI (right). The fit result is plotted
in red. Note how the position on the y axis is much better now. On the x axis however, the
AOI seem to be shifted due to the flanks not being symmetric.
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Figure 3.8: Cut through laser spot fitted with Fermi-edge like fit function (green) and
Super-Gaussian fit function (red) with the edges of the AOIs marked accordingly. Both
functions have similar results. Note that the Super-Gaussian is already elliptical.

with E(x, y) = const. for a certain ellipse, was used, a definition that originates
from statistics.

Furthermore, the fit function was replaced by a Super-Gaussian, a more typical
approach to describe laser intensity distributions [19]. The elliptical Super-Gaussian
is expressed by

fSG(x, y) = A · exp

− 1

2
(

1− σ2
xy

σ2
xσ

2
y

)E G
2

 (3.7)

with G > 2, which basically is a normal Gaussian with a higher exponent, i.e.
steeper flanks. For G→∞ it will be a perfect flat-top. Since the broadness of the
flanks of the Super-Gaussian cannot be estimated as easily as for fF (r), the AOI is
defined as the area, where fSG(x, y) is greater than 90% of its maximum A. In Fig.
3.8 the fit results of Super-Gaussian and Fermi-edge function are compared. Both
differ mainly in the flanks, which are excluded anyway. Also the AOIs are almost
the same, although defined differently. Therefore switching to the Super-Gaussian
poses no problems.

To further investigate the effects of asymmetric intensity distributions on the
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Figure 3.9: Super-Gaussian (solid line) and Super-Gaussian multiplied with plane (dashed
line). Both Super-Gaussiant have the same center. Note how the flanks are affected by the
plane. The fitting algorithm will compensate this by shifting the center. Since the AOI is
defined only by the Super-Gaussian part, it will be shifted accordingly.

AOI, fSG(x, y) was multiplied with the plane

z = 1 + αx+ βy (3.8)

with α and β as additional fit parameters. In the case of success, the absolute value of
the gradient of the plane

√
α2 + β2 could also be used to characterize the asymmetry.

By multiplying this plane to the Super-Gaussian, instead of, for example, addition,
the value of the resulting fit function far from the actual spot will still be almost
zero, so the plane will pose no problem with the unilluminated parts of the image.
The result of the fit will be asymmetric, so the previous definition of the AOI of
90% of the maximum or of A will not work, because it excludes the parts of the
Super-Gaussian, that are lowered by the plane. Therefore the AOI was chosen to
be the parts that are above 90% of the Super-Gaussian without the plane but with
otherwise equal parameters.

The AOIs obtained with this fit function showed considerable differences to the
previous AOIs. While few asymmetric laser spots had better AOIs, most of them
were much worse, especially for spots with only the diffraction pattern being asym-
metric. Fig. 3.9 gives a possible explanation: The plane multiplied on top of the
Super-Gaussian manipulated the flat-top region of the original distribution, but it
also affected the flanks. To compensate this, the underlying Super-Gaussian was
shifted towards the direction of the plane’s gradient to match the flanks again. The
AOI however, was calculated with the now shifted Super-Gaussian part only and
therefore was shifted too.

To investigate this, the angle of the plane’s gradient direction
(
α
β

)
in the x-

y-plane was calculated as ϕplane = arctan α
β
. For the shift of the centers of the

AOIs obtained with and without plane, the corresponding angle was calculated. In
Fig. 3.10, the distribution of the differences of both angles ∆ϕ is plotted for the
280 laser images. Obviously, both angles are strongly correlated, which verifies the
above explanation. (It should be noted, that two values of ∆ϕ where excluded in
Fig. 3.10 for resolution reasons. Those two values where at 180◦ ± 5◦)
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Figure 3.10: Histogram of the differences of the angles of plane gradient and shift of the
AOI centers of the fits with and without plane. The narrow scattering of ∆ϕ around 0◦

implies a strong correlation. Two values around 180◦ ± 5◦ where not included.

To sum up, fitting with a plane has to be dropped, although it produced better
results for a handful of asymmetric laser spots as seen in Fig. 3.11. Due to the
asymmetric underlying intensity distribution being described poorly by the Super-
Gaussian alone, the actual edges and the edges of the AOI differ significantly in
x. Fitting with a plane multiplied to the Super-Gaussian improved the matching
remarkably for these laser spots. However, these improvements come at the cost of
laser spots that were fitted well with only the Super-Gaussian. Since asymmetric
spots significantly differ from the ideal case they should be avoided anyway. Also,
the relative impact of a slightly biased AOI will be much smaller for them than for
more flat-top like laser spots. Hence, it should be refrained from using the plane
generally. It is possible to define a threshold that decides, whether to fit with or
without plane. A good candidate would be the gradient of the plane, multiplied
by the spot’s diameter and divided by the height A, which roughly represents the
intensity change by the plane, relative to the Super-Gaussian. However, due to the
small number of affected laser spots and the small expected impact, this was not
done here.

Despite some shortcomings, the fitting method has proven to be more predictable
than the gradient method. Taking the underlying distribution into account makes it
reliable and laser spots with different diffraction patterns and other inhomogeneities
produce almost the same AOI, allowing comparable characterizations over a wide
range of spots. Also information on the width of the flanks is obtained, which
already is an important characterization parameter.

3.3 Filtering
Experiences from the fitting have shown, that for some laser spots, the AOI cannot
be defined reasonably. This primarily applies to laser spots that do not have a
flat-top profile but rather resemble a typical Gaussian. In most cases, this is either
caused by a very small BSA size with subsequently large parts of the intensity being

22



x [pixels]

y 
[p

ix
el

s]

34 83 133

36

88

141

x [pixels]

in
te

ns
ity

 [a
.u

.]

14 80 147
0

0.5

1

y [pixels]

in
te

ns
ity

 [a
.u

.]

21 87 153
0

0.5

1

Figure 3.11: Laser spot with inhomogeneously illuminated BSA and AOI obtained by
fitting without plane. In x, the edges of the AOI and the actual distribution do not match.
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Figure 3.12: Non-flat-top laser spots with the AOI marked by blue ellipse. From left to
right: Gaussian shape due to small BSA size, transition from Gaussian to flat-top shape
with larger BSA, Gaussian shape due to large, inhomogeneously illuminated BSA. The AOI
will not characterize the spots adequately.

cut by apertures or by very large BSAs which cannot be illuminated homogeneously
and have a larger intensity in the center. Examples can be seen in Fig. 3.12. Usually
the exponent G of the Super-Gaussian will then be rather small (. 5) and the flanks
broad. In these cases, the AOI as defined above will only be a small area compared
to the full laser spot (for small BSA size, it can be down to ≈ 20 pixels). In other
cases, the AOI will be a small elliptical area with a large ratio of the semi-axes.
In these cases, a further analysis of the AOI makes no sense since it can only have
a minor effect on the emittance, not only because of its small share of the overall
intensity, but also due to the spot’s general deviation from the flat-top characteristic.

When required, these Gaussian like spots will have to be characterized with a
different algorithm. It is, however, very likely that the degrading of the emittance
due to the Gaussian shape will dominate over other manipulations, especially for
small spots, where no additional diffraction pattern will appear. In that case, the
exponent G obtained from fitting (see equation 3.7) might already be enough to
characterize the laser spot. On the other hand, the spots inbetween Gaussian and
flat-top shape were way to irregular to allow a universal characterization algorithm.
Asymmetric spots like in Fig. 3.11 pose no major problem to the fitting algorithm.
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Figure 3.13: Super-Gaussian exponent (G) vs. intensity within AOI (IAOI) over overall
laser intensity I for all 280 laser images analyzed. The ratio IAOI/I = 0.5 has proven to be
the best threshold for filtering (not shown in this graph). The corresponding exponent G is
an inferior threshold due to the small slope of G at this point.

Although it was discussed above, that the AOI can be shifted, the influence of this
is rather small compared to the overall deviations from the flat-top shape.

Hence, it is reasonable to find characteristic parameters that allow the program
to decide whether a further analysis should be conducted or not (or, if further studies
suggest that the analysis of the Gaussian shaped spots is necessary, to decide which
algorithm should be used). The following candidates for these characteristic were
studied:

• χ2 of the fit

• Super-Gaussian exponent G

• overall intensity I = ∑
ij a(i, j)

• overall intensity within the AOI

• standard deviation within the AOI

• fit function height A

• pixel count within the AOI

as well as various combinations of these parameters. The goal was to find a threshold
in these parameters or their combinations as a decision basis. The classification of
the spots by the threshold was compared to their fit result. Thereby no thresholds
where accepted that produced false negatives (i.e. decided to not analyze although
the fit result was reasonable), while false positives were tolerated though avoided.

The only parameters allowing a reasonable threshold were G and the ratio of the
intensity within the AOI and the overall intensity IAOI

I
. Of course, both thresholds

are correlated as shown in Fig. 3.13. The threshold of IAOI

I
= 0.5 has to be favored

over G = 6, due to the small slope of G at that position. Even small variations in
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G could lead to a different classification. Additionally, IAOI

I
might give important

meta information for the analysis, since it indicates the significance of the AOI.
Other attempts of filtering the spots failed. Matching the AOI size with the

size of the actual BSA had to be given up, because the BSA sizes could not be
reproduced reasonably anymore. Trials forcing a round fit and comparing it with
the elliptical fit results bore no fruits either.

Fitting as well as filtering where developed on the basis of the 280 laser images
taken between 23 March 2011 and 1 February 2012. Both were also tested with
a set of 187 images taken between 2 March 2012 and 3 July 2012. The successful
test with images not involved in the development speaks for the reliability of the
algorithms. It should be noted that not all of these laser spots were actually used
for operation, but a number of spots were used for alignment or were parts of error
reports. Only a rough preselection has been conducted to avoid laser images with
shapes far from real operation conditions.
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Chapter 4

Laser beam characterization

Up to now the laser spots are characterized only by the BSA size and their rms size.
Those obviously are not enough for a detailed analysis of the intensity distribution.
There are a few obvious parameters that accomplish this:

Using the mean of the pixel values within the AOI

a = 1
T

N∑
i=1

M∑
j=1

a(i, j) = 1
T

∑
ij

aij (4.1)

with T = N ·M , the standard deviation of the pixel values is

σaij
=
√√√√ 1
T

∑
ij

(aij − a)2 (4.2)

The standard deviation gives a measure of the variation of the pixel values around
the mean. Since the goal is to characterize the influence of the inhomogeneities on
the emittance, the relative variation needs to be considered, which is best described
by σaij

/a. This corresponds to the standard deviation of a distribution normalized
to have the mean a = 1. This way the relative variations are comparable for different
laser intensities. Though, the studies in [7, 8, 9, 10] have already shown, that this is
not enough to characterize the beam with respect to the emittance growth.

Furthermore, it might be interesting to investigate the statistical distribution of
the variations. Higher order moments of the distribution, like the skew [20]

γ = 1
T

∑
ij

(
aij − a
σaij

)3

(4.3)

and the kurtosis [20]

k = 1
T

∑
ij

(
aij − a
σaij

)4

− 3 (4.4)

are good tools to do this. The skew gives a parameter to discribe the asymmetry
of a distribution. Any symmetric distribution has a skew of γ = 0 while a tail
towards higher values amounts to a positive skew. A negative skew implies a tail
towards lower values. The kurtosis measures the broadness of the distribution with
the Gaussian distribution as a reference point k = 0. A positive kurtosis describes
a distribution higher but narrower than the Gaussian distribution, but with wider
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wings at its outer regions. Analogously, flatter, wider distributions have k < 0. Of
course, these parameters only give information on the quantitative distribution of
the variations and therefore are not sufficient, since they cannot distinguish between
noise - which has no significant effect on the emittance - and large-area structures
which decrease the electron beam quality.

Of course, not only the inhomogeneities of the flat-top part need to be analyzed.
Also the general form is important. Here, the exponent G of the AOI fit function
is important, especially for small BSA sizes, where G is relatively small and the
distributions resembles more a Gaussian than a flat-top. This parameter might
even provide the most important characterization for laser spots of this kind, that
did not pass the filtering procedure. But even for the other laser spots, G (or its
equivalent IAOI/I as discussed in 3.3) will give an index of the significance of the flat-
top analysis. Also the ratio of the semi-axes of the fit function should be considered.
Note that the parameters σx and σy are not necessarily the semi-axes but need to
be rotated according to σxy.

Further characterization parameters will be discussed in detail in the next sec-
tions.

4.1 Spatial Correlation
Parameters like rms error, kurtosis and skew describe the deviations between ideal
and actual distribution. However, they are not able to describe the spatial distri-
bution of these deviations. Specifically, it is not possible to distinguish between
inhomogeneities in the intensity distribution and statistical noise using only these
values. To quantify this distribution, a spatial correlation is suggested [9].

A covariance is defined by

cov(a, h) = 1
T

∑
ij

(aij − a) · (aijh − a) (4.5)

with aijh being the local mean of pixel values in the square of side length 2h + 1
around aij (see Fig. 4.1)

aijh = 1
(2h+ 1)2 − 1 ·

 h∑
l=−h

h∑
k=−h

ai+lj+k − aij

 (4.6)

=: 1
(2h+ 1)2 − 1 ·

(∑
lk

ai+lj+k − aij
)

(4.7)

In this definition the subtraction of aij avoids a direct dependence of aijh from aij.
Finally the spatial correlation is defined by

Λ(a, h) = cov(a, h)
σ2
aij

(4.8)

This can be regarded as the classical correlation coefficient between aij and aijh
since it only differs in the normalization: for the correlation coefficient, σ2

aij
in Eq.

4.8 needs to be replaced by σaij
· σaijh

. This definition was chosen because it proved
to be more sensitive for high brightness beams with a good homogeneity and gave
a greater range of variation [21]. It will be shown, that it also makes a distinction
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Figure 4.1: Illustration for the definition of aijh. Pixel values within the gray area are
averaged to obtain aijh.

between noise and large scale inhomogeneities. Due to this feature, this definition
will be studied in detail.

To understand the difference from the standard definition of the correlation co-
efficient, first assume two data sets a and a′ with the same correlation coefficient:

σah
σaij

σaijh

= σ′ah
σ′aij

σ′aijh

(4.9)

where σah is the covariance between aij and aijh. Since a better differentiation
of both sets is desired, assume without loss of generality that the corresponding
alternative definitions are different in the way

σah
σ2
aij

<
σ′ah
σ′2aij

(4.10)

This leads to
σah
σ2
aij

= σah
σaij

σaijh

·
σaijh

σaij

= σ′ah
σ′aij

σ′aijh

·
σaijh

σaij

<
σ′ah
σ′2aij

(4.11)

⇒
σaijh

σ′aijh
σaij

<
1
σ′aij

(4.12)

⇒
σ′aij

σ′aijh

<
σaij

σaijh

(4.13)

Equation (4.13) shows that the definition of the spatial correlation as in [9] will
be lower for data sets with a higher ratio of σaij

/σaijh
. This obviously is a good

approach, since σaijh
describes the standard deviation of large areas, i.e. it primarily
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contains the underlying intensity distribution, whereas σaij
is the standard deviation

of single pixels and also includes noise and statistical variations. Therefore a higher
ratio between both implies a higher ratio between noise and actual inhomogeneities.
This again implies the noise having a higher relative influence on the covariance.
Favoring this over the influence of inhomogeneities is of course sensible for a spatial
correlation.

While it is obvious, that for noise dominated intensity distributions σaij
will be

larger than σaijh
, it has to be proven that this is generally the case. To do so, the

definitions of both have to be compared:

σaij
=
√√√√∑

ij

a2
ij

T
− a2

ij σaijh
=
√√√√∑

ij

a2
ijh

T
− a2

ijh (4.14)

First, the mean of the local average is

aijh =
∑
ij

aijh
T

=
∑
ij

(∑
lk
ai+lj+k − aij

)
T [(2h+ 1)2 − 1] (4.15)

On the right side of equation (4.15) the inner sum adds up all pixel values in a
square of side length 2h+ 1 around aij. The outer sum repeats this for every i and
j, subtracting aij. This way, neglecting the borders of the data set, every pixel value
will be added up as often as there are pixels in the square around aij . Knowing
this, equation (4.15) can be rewritten as

aijh =
∑
ij

(2h+ 1)2aij − aij
T [(2h+ 1)2 − 1] =

∑
ij

aij
T

= aij (4.16)

So the average of all pixel values and the average of the local mean are the same.
The difference of the standard deviations in equation (4.14) reduces to the sums.
These have to be analyzed in detail.

Looking at the definition of the statistical variance V (x)

V (x) = 1
Nx

∑
i

(xi − x)2 (4.17)

it is obvious that V (x) ≥ 0. Since equation (4.17) can be rewritten as V (x) = x2−x2

this results in

x2 ≤ x2 (4.18)

or, to put it in words, the mean of the squares is always larger than the square of
the mean.

For easier handling, the sum in σaijh
in equation (4.14) can be transformed to

∑
ij

a2
ijh

T
=
∑
ij

(∑
lk
ai+lj+k − aij

)2

T [(2h+ 1)2 − 1]2 =
∑
ij

( ∑
lk 6=0

ai+lj+k

)2

T [(2h+ 1)2 − 1]2 (4.19)

Applying equation (4.18) to the right side of equation (4.19)

∑
ij

a2
ijh

T
=
∑
ij

( ∑
lk 6=0

ai+lj+k

)2

T [(2h+ 1)2 − 1]2 ≤
∑
ij

∑
lk 6=0

a2
i+lj+k

T [(2h+ 1)2 − 1] (4.20)
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Again using the fact that inner and outer sum add up every a2
ij exactly (2h+1)2−1

times, this can be rewritten to

∑
ij

a2
ijh

T
≤
∑
ij

[(2h+ 1)2 − 1]a2
ij

T [(2h+ 1)2 − 1] =
∑
ij

a2
ij

T
(4.21)

⇒
∑
ij

a2
ijh

T
≤
∑
ij

a2
ij

T
(4.22)

⇒ σaijh
≤ σaij

(4.23)

This way, the spatial correlation Λ(a, h) will always be between −1 and 1 since
its absolute value will always be smaller than the absolute value of the correlation
coefficient.

It should be noted that in practice Λ(a, h) will not have relevant negative values.
A negative Λ(a, h) implies that for the majority of pixels, a pixel value aij above
average a has a corresponding local average aijh below a and vice versa. This is pos-
sible for noise dominated distributions with aijh ≈ a. However, in this case Λ(a, h)
will be approximately zero. An attempt to construct a theoretical distribution with
Λ(a, h) well below zero failed.

In [9], pixel values outside the - differently defined - AOI, that need to be included
in aijh, are assumed to be equal to the mean of the whole AOI, to avoid boundary
problems. This is legitimate, since the intensity distributions of the SPARC laser
are relatively uniform, in particular it is completely lacking the diffraction patterns
observed at PITZ. The inhomogeneities seem to come from the illumination of the
BSA only. However, this will not work for the PITZ laser. The diffraction pattern
usually has its highest values at the edges , where the boundary problems will
appear. Calculating the local average by assuming some pixels to be equal to the
global mean of the AOI will strongly bias the results towards lower values for Λ.
For this reason, pixels outside the AOI are simply not included in the calculation of
aijh. This way, only the statistical representativity of aijh is reduced by the smaller
size of the sample, but a systematic bias is avoided.

It needs to be discussed, whether to actually use the mean a for the calculation,
or to replace it with the result of the Super-Gaussian fit fSG(i, j). This might be
useful since the fit result is meant to describe the underlying intensity distribution,
which might be a better point of reference. However, one needs to bear in mind,
that it still does not describe the ideal case.

Calculations show that σ usually is larger when calculated with the fit result as
can be seen in Fig. 4.2. This is probably due to the fact that at the edges, the fit
result has smaller values, but at the same positions, the outer ring of the diffraction
pattern has its highest values. The differences of both get even more pronounced
by the squaring. Since the standard deviation σmean is smaller in most cases, the
mean describes the flat-top part of the laser images better. These effects carry over
to the spatial correlation (Fig. 4.3). Here again, the values calculated with the fit
result tend to be larger. The reasons are probably the same as for σ, although the
covariance is already divided by σ2 to obtain the spatial correlation Λ. Therefore
cov(a, h) seems to be even more affected.

All in all, it was decided to use the mean for the calculations instead of the fit
result. The differences have been too large to be neglected (up to 10% of the resulting
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Figure 4.2: Histogram of the ratios of the rms error calculated with the fit result σfit and
the standard deviation σmean. The histogram shows that σfit > σmean in most cases.
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Figure 4.3: Histogram of the ratios of the spatial correlations calculated with the fit result
and with the mean. As for the rms, values calculated with the fit result tend to be larger.
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values) and all statistical features of the rms and the spatial correlation (as discussed
in the appendix) can only be reasoned with the mean a applied. Also one has to
bear in mind, that the fit result describes a realistic underlying intensity distribution
but not the ideal case, so its meaning in the analysis of the inhomogeneities is rather
unimportant.

Finally an appropriate value for h needs to be found. 2 · h is the size of the
square in which the local average aijh is calculated. Therefore it acts as a resolution
for the spatial correlation. Structures significantly smaller than this square will be
averaged out or at least their influence will be toned down. Ideally, h needs to be
smaller than the smallest structure to be resolved. Basically this is the working
principle of the spatial correlation since noise has the smallest ’structures’ of down
to 1 pixel. On the other hand, h must not be chosen too small. For laser spots
with low statistical noise, the pixels immediately around aij will have about the
same value as aij, so the smaller h is chosen, the more aijh will converge towards aij
and the spatial correlation will converge towards Λ = 1. In this case, the variations
in Λ will be too small and too dominated by noise in order to make a reasonable
distinction between different laser spots.

In order to have a consistent significance of the spatial correlation for different
spot sizes, the resolution - and thereby h - needs to be chosen relative to the spot
size. Otherwise, for different spot sizes, structures with different relative size (i.e.
influence on the emittance) will be weighted equally. Then the interpretation of the
spatial correlation would depend on the spot size, which is undesirable. In [9], a ratio
of N/h = 20 was found to be optimal for the SPARC laser system. A wide variation
in Λ for a better distinction (achievable with small N/h) and a minimum resolution
(large N/h) have been the decisive criteria. Here, N can roughly be considered the
diameter of the laser spot. Since the spots of the PITZ laser system are assumed to
be possibly elliptical, N is redefined as N = σx + σy with σx and σy from the AOI
fit function. For the spots analyzed in this work, this is a good approximation for
the N used in [9], since all of the spots were approximately circular. However, if the
ratio of the ’semi-axes’ σx and σy is significantly different from 1 or σxy is large, this
will not work properly anymore. In this case a possible solution might be different
values for h in x and y, of course with respect to the rotation of the actual semi-axes
induced by σxy. In Fig. 4.4, histograms of the spatial correlation are presented for
different ratios of N/h. Obviously, for the PITZ laser, N/h = 20 does not give a
satisfying variation. The widest variation is seen for N/h ≈ 10. This is due to the
different laser spots measured at PITZ and SPARC. While the PITZ laser produces
the strong diffraction pattern discussed above, no such pattern can be seen in the
SPARC images, where the inhomogeneities seem to stem from the illumination of
the BSA only. Due to the good uniformity of the SPARC laser, a larger N/h had
to be chosen in [9] to resolve smaller features of the intensity distribution. The
diffraction pattern, which often makes up the major factor for the inhomogeneities
of the PITZ laser, usually has relatively large structures, so the resolution does not
have to be as fine.

In Fig. 4.5, two laser spots are shown with almost the same BSA size. In the
lower left diagram, Λ is plotted against N/h. Here, a major disadvantage of the
spatial correlation shows up. Despite the fact, that the right spot is notably more
uniform, the spatial correlation is always higher (i.e. worse). That is because Λ
- as defined in equation 4.8 - is calculated relative to the standard deviation σ,
which is much smaller for the right spot. Without further analysis, no decision on
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Figure 4.4: Histograms of Λ calculated for different values of N/h. Unlike the result
of [9] the widest variation is around N/h = 10, while for N/h = 20 the spatial correlations
concentrate at higher values. The reason for this are the differences in the analyzed laser
spots. The SPARC laser images are more uniform than the PITZ laser images and show no
noticable diffraction pattern.

which parameter is more important for the emittance can be made. Also it is very
likely, that there is an overlap, i.e. for spots with similar standard deviation, the
spatial correlation might be the critical parameter, while in general a lower standard
deviation is better. Therefore it is suggested, to use the relative covariance

% = cov(a, h)
a2 (4.24)

as a characterization parameter, with cov(a, h) as defined in equation 4.8. For the
two spots in Fig. 4.5, % is plotted in the lower right diagram, against N/h. Here
the better homogeneity of the right laser spot becomes apparent at the first glance,
which makes it the superior parameter e.g. for operation staff of the accelerator, in
case it proves to be relevant for the emittance. It combines most the information of
the spatial correlation (spatial distribution of the inhomogeneities) and the standard
deviation (general height of these inhomogeneities) and therefore might even replace
both parameters in the characterization.

Ultimately, no decision for a value of N/h can be made without simulations
investigating the effect of the different values of Λ and % on the emittance and the
dependency on N/h. On the other hand, calculating Λ for different values of N/h
might be even more interesting. By doing so, laser spots are analyzed with different
resolutions, which can give additional information on the spatial distribution of the
inhomogeneities, e.g. if the inhomogeneities are small-scale structures or large-scale
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Figure 4.5: Two laser spots with similar BSA size but different standard deviation:
σleft/a = 0.17 and σright/a = 0.11. Below are the spatial correlation Λ and the rela-
tive covariance cov(a, h)/a2 plotted against N/h (green: left spot, blue: right spot). While
the spatial correlation alone indicates, that the right spot is worse, the relative covariance
shows that it actually is more uniform than the left spot. The reason for this difference is
the relativity of Λ to the standard deviation. (Note that the steps occur when a change in
N/h causes no change in the rounded h.)

asymmetries. The steeper slope and lower values in Λ in Fig. 4.5 indicate, that the
inhomogeneous structures of the left spot have a smaller scale than the structures
of the right spot.

4.2 Expansion in Fourier and Bessel series
With the spatial correlation and the relative covariance, parameters have been in-
troduced, that, one the one hand, can quantify the spatial distribution of inhomo-
geneities and on the other hand also can provide information on their size. Never-
theless both parameters are still purely statistical quantities. Now its is interesting
to investigate the actual intensity distribution directly. In particular, integral trans-
forms are of interest, that transform the laser spots into spectra. The most obvious
candidate is of course the Fourier transform, especially since the diffraction pattern
can be explained by Fourier optics. However it will not be possible to calculate
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Figure 4.6: Information loss during transform from cartesian to polar coordinates due to
discrete data. For large r, several pixels (i, j) will contribute to a single coordinate (r, ϕ),
for small r, a single pixel (i, j) will be included in various (r, ϕ)-duplets.

some kind of “effective BSA” (i.e. an aperture in the Fourier plane equivalent to the
actual limiting apertures) from the laser spots, since half of the information relevant
to Fourier optics - the phase - is lost during the measurement, that only can measure
the absolute intensity values. For this reason, other transforms might prove to be
interesting as well. Here, a transform on the base of Bessel functions of the first
kind is recommendable, due to the circular nature of most laser spots.

At this point it should be discussed, which parts of the spot need to be trans-
formed. Of course the transform will only involve the AOI, since the structures
on the flat top are of particular interest. Thus the analysis must be done in polar
coordinates, with due regard to the elliptic distortion. The problem is, that for an
analysis in polar coordinates, the data has to be transformed from cartesian to polar
coordinates. Since the original data is discrete, information loss is inevitable as can
be deduced from Fig. 4.6. The most simple methode, calculating (i, j) for a given
(r, ϕ) and using the pixel value next to this coordinate - e.g by rounding (i, j) -
has to be dropped, because in this way, statistical fluctuations and noise will play a
major role. On the other hand, defining an area for every (r, ϕ) and averaging over
this area will require much effort and when it comes to small values of r, the area
will still be too small to have a sufficient statistical basis. To avoid this, the original
data was smoothed. Every pixel was assigned the mean of pixel values in a square
around it, similar to aijh in the previous section, only without eliminating aij. The
side length of the averaging square was chosen to be 1/30 of the diameter of the
AOI, which usually ranges between 4 and 10 pixels. Here again, structures smaller
than this square will not be resolved but such structures will have no significant
impact on the emittance either.

To take the elliptical shape of the AOI into account, first, the actual semi-axes
need to be calculated. The rotated ellipse as defined in eq. 3.6 can be represented
by the matrix [20]

M =
(
σ2
x σxy

σxy σ2
y

)
(4.25)

which can be rotated by an angle θ

M ′ = RT ·M ·R (4.26)
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with R the rotation matrix

R =
(

cos θ − sin θ
sin θ cos θ

)
(4.27)

An ellipse with the semi-axes along x- and y-axis has the form

M ′ =
(
r2
x 0
0 r2

y

)
(4.28)

With the matrix elements M ′(1, 2) = M ′(2, 1) = 0, the rotation angle can be calcu-
lated as

θ = 1
2 arctan 2σxy

σ2
x − σ2

y

(4.29)

With this, the semi-axes rx and ry can be calculated. In polar coordinates, the
ellipse is described by the distance from the center

d(ϕ) = rxry√
rx2 sinϕ+ ry2 cosϕ

(4.30)

Using this, elliptical coordinates can be transformed into cartesian coordinates. In
polar coordinates, r refers to a circle with the fixed radius r. In order to remain
consistent, in the elliptical coordinates (r, ϕ), r will not refer to the distance d from
the center but to the ellipse with the smaller semi-axis r.

The main goal of this work is to characterize the inhomogeneities of the laser
spot, i.e. the variations from the ideal flat-top. Therefore, the mean a (see equation
4.1) was subtracted from the data before transform, so only the variations from that
mean will be analyzed.

The Fourier transform for finite, discrete data f(t) is defined as

cn = 1
T

T−1∑
t=0

f(t) · e−2πint
T (4.31)

In order to use Bessel functions of the first kind Jν(r) as a base for integral trans-
forms, it has to fulfill two requirements: They need to be orthogonal and the vector
space spanned by the Bessel functions needs to include the function to be trans-
formed, i.e. the set of Bessel functions needs to be complete. The orthogonality is
given for the scalar product∫ b

0
Jν

(
ανm

r

b

)
Jν

(
ανn

r

b

)
rdr = δnm

b2

2 [Jν+1(ανm)] (4.32)

where ανm is the mth zero of Jν(r). The completeness of Jν
(
ανn

r
b

)
is proven by

Watson ( [22], p. 591f) in the interval (0, b). With this, any function f(r) can be
expanded in the series

f(r) =
∞∑
m=1

cνmJν

(
ανm

r

b

)
(4.33)

with r ∈ (0, b), ν ≥ 0 and the coefficients cνm

cνm = 2
b2[Jν+1(ανm)]2

∫ b

0
f(r)Jν

(
ανm

r

b

)
rdr (4.34)
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being the transform of f(r) [23].
While this transform is named Fourier-Bessel series expansion (or Hankel trans-

form for b → ∞), it will hereafter be referred to as Bessel transform, whereas the
term Fourier-Bessel transform will refer to a successive Fourier transform in one
dimension of a two-dimensional field and a Bessel transform in the other dimension,
as it will be discussed below.

The next step will be the coordinate transformation in two dimensions. The
Fourier transform in two dimensions can be written as

F (k, l) = 1√
MN

M−1∑
m=0

N−1∑
n=0

f(m,n)e−2πi(mk
M

+ nl
N ) (4.35)

= 1√
M

M−1∑
m=0

f ′(m, l)e−2πimk
M (4.36)

with

f ′(m, l) = 1√
N

N−1∑
n=0

f(m,n)e−2πinl
N (4.37)

being the 1D Fourier transform of f(m,n) in n for all M columns. This shows, that
a two-dimensional Fourier transform can be accomplished by simply applying two
successive 1D Fourier transforms, one in each dimension. Fourier-Bessel transforms
can be derived analogously, taking into account, that the Bessel transform works in
real space only.

Concerning the two-dimensional transform, the obvious choice for the transform
in ϕ is the Fourier transform, because the data is periodic in ϕ. If a Bessel transform
is applied in ϕ, the result will strongly depend on the definition of ϕ = 0 and
will change with any change in the mapping from cartesian to polar coordinates.
Therefore, only the option of Fourier-Bessel transform and Fourier-Fourier transform
need to be discussed.

The Bessel transform was implemented in the code as derived in eq. 4.34, with
the integral replaced by a sum to adapt for the discrete data. The zeros ανm are
calculated with the third party MATLAB function ZEROBESS [24], which uses the
Newton-Raphson method. Although MATLAB has a build in Fourier transform
function fft, a custom Fourier transform was written according to eq. 4.31, to
allow for better control of the code. Both functions where then separately tested for
functionality and accuracy. To accomplish this, the Fourier and Bessel weights cn
and cνm where generated randomly within [−0.5, 0.5]. Then, a sample was calculated
by adding up Bessel or cosine functions according to the weights. Afterwards, the
sample was analyzed with the written transform functions. For the Fourier trans-
form, the differences between initial weights and result were within one order of
magnitude to the floating-point relative accuracy (MATLAB command eps), hence
the Fourier transform is considered to be accurate and working. However, it should
be noted, that for arbitrary functions used as samples, the Fourier transform was
not as accurate. The error from the analytic result increased with n, due to the dis-
cretization. Still the difference from the built-in Fourier transform was marginally.
For the Bessel transform, things look different. In Fig. 4.7 the random weights
and the result of the transform are plotted, as well as the difference between both.
The difference shows a characteristic curve that looks like an exponential slope. So
unlike the Fourier transform, the Bessel transform comes with an error even for data
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Figure 4.7: Randomly generated Bessel weights (blue) and the result of the Bessel trans-
form of the sample (green). The difference (red) shows the characteristic behavior, though
slope and extent differ widely.

calculated from its base functions. This will be examined in more detail. Since the
difference curve varied significantly, the process of randomly generating the Bessel
weights, calculating the sample and transforming it was repeated 1000 times. For
the 1000 curves, the absolute mean was calculated and is shown in Fig. 4.8. How-
ever, the slope depends on the length of the sample (i.e. mmax). For smaller mmax,
the curve is steeper and the errors larger. The characteristic curve implies that the
Bessel transform is relatively accurate for smaller m (smaller “frequencies”) and gets
worse for higher frequencies, i.e. shorter periods. Since equation 4.34 is exact, this
is obviously caused by replacing the integral with a sum to allow for discrete data.

cνm = 2
b2[Jν+1(ανm)]2

b∑
r=0

f(r)Jν
(
ανm

r

b

)
r (4.38)

For the sizes m and n faced in this work, the Fourier transform is considered much
more accurate than the Bessel transform, so for the two-dimensional Fourier-Bessel
transform, the Fourier transform will be conducted first.

It is important to remember some fundamental differences between the Fourier
and Bessel transform, when interpreting the following diagrams. First off, when
interpreting the Bessel functions Jνm as somewhat periodic functions, m and the
index of the Fourier coefficients, n, are not the same. For Bessel functions, m is
the number of zeros within the range of data, while for e−2πint

T , n is the number of
periods, which always have 2 zeros. This means, the Bessel functions have a smaller
“resolution” of only one zero (or one maximum), while for the Fourier transform,
the resolution is doubled (for an odd number of zeros k, the Fourier transform will
produce a broader spectrum around n = k/2). This has the effect, that for a data
set of length l, the maximum number of Bessel coefficients mmax = l, while for the
Fourier coefficients, nmax = l/2. This is because a maximum (or a zero) needs at
least one pixel to be reproduced, one period (2 zeros) needs at least 2 pixels. Any
higher frequency will produce a kind of stroboscopic effect that will be analyzed as
a lower frequency. Anyhow, it is unlikely that these restrictions will pose a problem,
since structures smaller than several pixels are probably noise and will be lost during
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Figure 4.8: Absolute difference between randomly generated Bessel weights and result of
the Bessel transform averaged over 1000 samples with mmax = 100. The Bessel weights
were within [−0.5, 0.5]

the smoothing and subsequent transform to elliptical coordinates.
Another important difference is the fact, that the Fourier transform is able to

account for an offset, which is simply represented by c0. The Bessel transform on
the other hand does not have an offset coefficient, because a constant function is
not orthogonal to the Bessel functions. Any offset from a superposition of Bessel
functions will add the Bessel transform of a constant to the spectrum, which is
rather broad. Unfortunately, the actual spectrum and the offset spectrum cannot be
separated. However, there is a possibility to cope with this problem. As mentioned
earlier, the set of Bessel functions is only complete in (0, b). This is because at the
point r = b, Jν

(
ανm

r
b

)
= Jν(ανm) = 0. Also, Jν (0) = 0 for every ν > 0. Only

J0 (0) 6= 0. Since it is unlikely, that the sample has the same value at r = 0 and
r = b, in the following, only J0 was examined further. For this reason, the index ν
will not be written anymore, every reference to the Bessel transform implies ν = 0.
Now, the sample can be provided with an artificial offset that enforces the element
at r = b to be 0. With this trick, the Bessel functions J0 have a chance to describe
the modified sample completely. Therefore it is assumed, that the artificial offset is
the best estimation for the value, around which the Bessel functions are fluctuating.
In fact, later comparisons showed a cleaner, narrower spectrum. However, it needs
to be kept in mind, that the sample was biased in an arbitrary way to comply with
the base functions of the transform.

In Fig. 4.9 - 4.11 three exemplary laser spots are presented together with their 1D
Fourier transforms in the azimuthal angle ϕ and their 2D Fourier-Bessel transforms.
For the Fourier transforms in ϕ, the absolute values are shown, because cn(r) is
complex for n 6= 0. Only c0(r) (the average of every column of r in (b)) always
has real values and is therefore presented with its sign. The 2D Fourier-Bessel
transforms were calculated from these real |cn(r)| values and are presented in (e)
and (f). While using the absolute values of cn(r) is not exactly a 2D Fourier-Bessel
transform, it makes interpretation easier: The result represents the Bessel transform
of the weights of the respective Fourier base functions without regarding the phase.
If desired, the phase can be extracted and transformed separately.
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Figure 4.9: Laser spot in cartesian (a) and polar (b) coordinates. The Fourier transform
in ϕ (c)(d) is the first step of the Fourier-Bessel transform. The Fourier-Bessel coefficients
in (e) are the result of the Bessel transform of the Fourier coefficients cn(r) in (c) along r.
Equally, (f) represents the Bessel transform of (d) in r.
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(f) cm0 (blue) and cm1 (green) of the
Fourier-Bessel transform.

Figure 4.10: Laser spot in cartesian (a) and polar (b) coordinates. The Fourier transform
in ϕ (c)(d) is the first step of the Fourier-Bessel transform. The Fourier-Bessel coefficients
in (e) are the result of the Bessel transform of the Fourier coefficients cn(r) in (c) along r.
Equally, (f) represents the Bessel transform of (d) in r.

41



x [pixels]

y 
[p

ix
el

s]

63 157 251

63

157

251

(a) Smoothed Laser spot

r [pixels]

ϕ
 [d

eg
]

24 60 95

90

180

270

(b) AOI in polar coodinates with a sub-
tracted.

1D Fourier coefficient c
n
(r)

r [pixels]

n 
(a

zi
m

ut
ha

l)

24 60 95

11

29

47

(c) Fourier tranform in ϕ

0 20 40 60 80 100
−60

−40

−20

0

20

40

60

80

r [pixels]

1
D

 F
o
u
ri
e
r 

c
o
e
ff
ic

ie
n
t 
c

n
(r

)

 

 

c
0
(r)

c
1
(r)

(d) c0(r) (blue) and c1(r) (green) of the
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(e) Fourier-Bessel transform
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(f) cm0 (blue) and cm1 (green) of the
Fourier-Bessel transform.

Figure 4.11: Laser spot in cartesian (a) and polar (b) coordinates. The Fourier transform
in ϕ (c)(d) is the first step of the Fourier-Bessel transform. The Fourier-Bessel coefficients
in (e) are the result of the Bessel transform of the Fourier coefficients cn(r) in (c) along r.
Equally, (f) represents the Bessel transform of (d) in r.
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Unfortunately, the spectra obtained by Fourier-Bessel transform are anything
but narrow line spectra. Adjusting the values at r = b (as discussed above) has
narrowed the spectra significantly, so lines can be identified along m. However,
those lines are rather broad. An influence of the limited accuracy of the Bessel
transform discussed above can be denied, since the errors are small for small values
of m, the important part of the spectra. The separated but broad lines imply, that
the data can roughly be described by Bessel functions corresponding to the centers
of these lines. Nevertheless, these Bessel functions need to be modified in their form
to comply with the data, hence the broadness. This means, Bessel functions are not
the best choice for the transform along r, since those are practically just counting
the maxima. In principle, a 2D-Fourier transform should be able to do at least the
same, while relying on the more intuitive sine and cosine functions.

For the same laser spots, the two-dimensional Fourier transforms are presented
in Fig. 4.12. Here again, the second transform was performed with the absolute
values of the result of the first transform, except for n = 0. As with the Fourier-
Bessel transform, the spectra are broad and unhelpful. In fact, the spectra look
even broader than the ones of the Fourier-Bessel transform, though this is only due
to the smaller resolution of the Fourier transform mentioned above.

Neither the Fourier-Bessel transform, nor the 2D-Fourier transform offer much
useful information to be extracted from the spectra. On the other hand, it makes
no sense to use the whole transform of a laser spot for its characterization. It has
to be kept in mind, that the aim of this work is, to provide information that helps
operation staff in optimizing the laser spot, resulting in the best achievable emittance
of the electron beam. In order to do this, systematic measurements or simulations
have to be conducted to correlate parameter values or features of diagrams to the
emittance growth. This will become harder, if not impossible, the more complex
the information gets and the harder it is to interpret. For the broad spectra of
two dimensional transforms, it is unlikely that universally valid relations can be
found. Therefore, the Fourier-Bessel transform und 2D-Fourier transform have to
be dropped as means of laser characterization.

With this, the two most promising two-dimensional integral transforms have
disqualified. However, the approach should not be set aside completely. A focus
should be set on the one-dimensional Fourier transform in ϕ as seen in Fig. 4.9(c)
- 4.11(c). The meaning of cn(r) can be understood easily. When plotted against n,
it is simply the Fourier transform of one column of the laser spot displayed in polar
coordinates, i.e. the spectrum of sine and cosine waves constituting that column.
If plotted against r, as in Fig. 4.9(d) - 4.11(d), it displays the weight of a certain
angular frequency n over the course of r.

The presented 1D Fourier transforms show that the main part of the inhomo-
geneities is made up of frequencies with n / 10. Coefficients with larger n only
manipulate the shape of the lower frequency inhomogeneities or are statistical vari-
ations. For further analysis, the Fourier transform can therefore be reduced to
n ≤ 10. Unfortunately, still several hundred values remain, which is far to much for
a useful characterization. Information has to be reduced somehow, while keeping
important characteristics of the laser spot. An interesting candidate is a projection
of the absolute values of cn(r) on n: ∑r |cn(r)|. This will represent the complete
influence of the frequency n on the laser spot. Comparing this for different n should
give characteristic information on distribution of inhomogeneities on the spot. How-
ever, it needs to be kept in mind, that for a small r, the relative influence is much
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Figure 4.12: Two-dimensional Fourier transforms of the laser spots shown in Fig. 4.9 -
Fig. 4.11. The left side represents the 1D Fourier transform in r of the 1D Fourier transform
in ϕ (Fig. 4.9(c) - Fig. 4.11(c)). On the right side, the Fourier transforms of Fig. 4.9(d) -
Fig. 4.11(d) are presented.
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smaller than for a large r. Hence, the coefficients cn(r) need to be weighted by the
relative area they cover, e.g. π · [r2 − (r −∆r)2] /AAOI (with AAOI the area of the
AOI) for circular spots. Also, the projection needs to be divided by the average of
the AOI, in order to compare the relative magnitude of cn(r) for various laser spots.
So, for a round laser spot, the projection is calculated as

p(n) =
∑
r

|cn(r)| · π [r2 − (r −∆r)2]
AAOI · a

(4.39)

with the average of the AOI a. Nevertheless, this projection cannot suffice as a
characterization of the spatial intensity distribution as it neglects an important part
of the result of the Fourier transform: the phase contained in the complex values.
It is possible to think of laser spots with the same projection p(n) but completely
different characteristics. This can easily be done for any laser spot by arbitrarily
choosing a section along r (e.g. ring of arbitrary width for round spots) and rotating
it around the center by an arbitrary angle. A simplified, hypothetical example for
this is shown in Fig. 4.13(a) and 4.13(b). Both spots have only one azimuthal
frequency of n = 1. While the phase for the left, relatively symmetric spot changes
over r, it is independent of r for the right spot. Although the spots differ significantly,
both have the same projection p(n). To cope with this, the complex projection is
introduced:

pc(n) =
∣∣∣∣∣∑
r

cn(r) · π [r2 − (r −∆r)2]
AAOI · a

∣∣∣∣∣ (4.40)

It differs from p(n) in that the coefficients cn(r) are added up as complex numbers.
Interpreting complex numbers as vectors on the complex plane, this means, that the
complex coefficients cn(r) are still added up like in p(n) if all of them have the same
phase (i.e. direction in the complex plane). If on the other hand, the phases differ,
they will be added up like vectors, possibly canceling each other, so 0 < pc(n) < p(n).
In other words, a large value of pc(n) means, that the frequency n determines the
global image of the laser spot and has a clear footprint in the profiles. A small
value implies phase shifts along r and stronger small scale variations but better
global symmetry. Therefore, by comparing p(n) and pc(n) a method is provided to
distinguish between small scale and large scale inhomogeneities in ϕ.

In Fig. 4.13, this can be seen: the left, more symmetric spot has a complex
projection pc(n) significantly smaller than p(n) because the phase of the azimuthal
sine is changing over r. For the right, highly asymmetric spot, the phase is constant
over r, thus pc(n) ≈ p(n).

In Fig. 4.14 the weighted Fourier projections of the spots shown in Fig. 4.9 -
4.11 are presented. It is interesting to interpret the spectra: The spot 4.14(a) has
a relatively broad spectrum with p(n) decreasing with n, which means, the higher
frequencies are primarily modifying the form of the lower frequency modulations.
However, with pc(n) being significantly lower than p(n) for the dominating frequency
n = 1, this does not dominate the whole picture that much. The raised value in p(3)
suggests 3 local maxima along ϕ in a limited range of r. The spot in Fig. 4.14(b) has
a very narrow spectrum with the dominating frequency n = 1 almost unmodified.
As expected, pc(1) ≈ p(1), which is obviously due to the asymmetry of the laser
spot. The third spot 4.14(c) again has a very broad, decreasing spectrum, but
unlike spot 4.14(a), this spectrum dominates the overall picture, since pc(n) ≈ p(n)
for the dominating frequencies.
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(d) Weighted Fourer projections p(n) and
pc(n). Both projections are the same.

Figure 4.13: Weighted Fourier projections for constructed symmetric and asymmetric
laser spots. Both spots have an azimuthal frequency of n = 1 and a radial frequency of
m = 2. However, both look very different due to different phases of the periods in ϕ. For
the more symmetric spot, the phase was constant over r, while for the asymmetric spot, the
phase switched between 0 and π with every half period along r.
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Figure 4.14: Weighted Fourier projections of the laser spots shown in Fig. 4.9 - 4.11.

Of course, the spectra also should be compared directly, as in Fig. 4.15. Since
all of the spots are dominated by the azimuthal frequency n = 1 while the spot in
Fig. 4.14(a) has the lowest p(1) it must be considered the most homogeneous spot
in terms of rotational symmetry.

As mentioned above, comparing p(n) and pc(n) allows to distinguish between
small scale and large scale inhomogeneities in ϕ. However, if pc(n) in fact is small
compared to p(n), i.e. the inhomogeneities are on a smaller, non-global scale, no
conclusions on the actual scale can be made: while it is clear, that the phases change
over the course of r, the frequency of this change is completely unknown yet. To get
a grasp of the radial frequencies, the one dimensional Fourier transform along the
radius, cm(ϕ) can be used. Here again, a projection is the best choice to compress
the information. However, this time, no weighting is necessary, since every ϕ is
similar. The radial projection is then calculated as

pr(m) = ∆ϕ
2πa

∑
ϕ

|cm(ϕ)| (4.41)

where ∆ϕ
2π is the inverse of the number of steps in ϕ, which makes pr(m) the average

relative Fourier coefficient pr(m) = cm

a
.

The radial projections for the laser spots discussed above are presented in Fig.
4.16. For the spot (a) the relatively large values of pr(m = 1..3) suggests a radial
frequency of about m = 2. The spectrum for spot (b) looks similar, but the smaller
value for pr(2) indicates more separate frequencies of m = 1 and m = 3. Spot (c)
shows two isolated frequencies: a dominating one withm ≈ 1 and a smaller one with
m ≈ 5. While it is possible, to compare the coefficients of one spot to distinguish
between major, minor and modifying frequencies, the spectra of different laser spots
should not be compared. The reason for this can be seen, when comparing the
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Figure 4.15: Comparison of the weighted Fourier projections p(n) of the laser spots above.
The spot in Fig. 4.14(a) (blue) has the lowest dominating frequency and can therefore be
considered the most rotationally homogeneous spot, the more so because of its small pc(n).
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Figure 4.16: Radial Fourier projections of the laser spots shown in Fig. 4.9 - 4.11.
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spectra of the spots (a) and (b): the values of pr(m) are much larger for spot (a)
than for (b), which suggest, (b) is more homogeneous in r. However, the relative
height of the inhomogeneities is roughly similar. The reason for this mismatch is
the averaging in the calculation of pr(m): while the azimuthal asymmetry of (b)
will also have an impact on the radial projection, it will diminish at the point of the
azimuthal zero-crossing, thereby reducing the average. Another reason to be careful
when interpreting pr(m) is that the spectrum does not describe the fluctuations
around the actual average a, but around the calculated value a+ c0(ϕ) for every ϕ.
This is, because for the Fourier transform along r, every value along r is weighted
equally, which leads to a wrong average in polar coordinates, hence c0(ϕ) 6≈ 0 and
pr(0) 6≈ 0. A third reason for the limited value of pr(m) for characterization purpose
is, that the spectrum highly depends on the definition of the AOI. If the AOI is
chosen to be larger (e.g. everything larger that 80% of the fit function maximum),
the fluctuations will have a smaller relative size, compared to the AOI and the the
spectrum will shift to larger m.

Therefore, the radial projection pr(m) should only be considered as additional
information to the weighted azimuthal Fourier projections discussed above. Its mere
purpose is to provide an estimate of the radial frequencies to determine the scale
of the inhomogeneities, if pc(n) << p(n). Unlike for p(n), it is not useful, to calcu-
late a complex projection for the radial Fourier transform, similar to pc(n), since a
phase shift can occur when the center of the AOI is not exactly the center of the
diffraction pattern. Also, a phase change would have no impact on the scale of the
inhomogeneities along r.

The relatively broad spectrum of the radial Fourier projection in Fig. 4.16(a)
raises the question, if the Bessel transform is the better choice to calculate pr(m).
In that case, cm(ϕ) in equation 4.41 would not represent the Fourier transform but
the Bessel transform along r. The advantage is the better resolution of the Bessel
transform as discussed before. The radial Bessel projections pr(mB) of the laser
spots discussed above are shown in Fig. 4.17. Note that 2mB =̂m. As expected, the
lines of the spectra are better separated than in the radial Fourier projection. The
broad Fourier spectrum of spot (a) stems from a single maximum mB = 1 which
would have an equivalent m = 1/2 in the Fourier projection. Since m can only have
integer values, this is substituted by a combination of m = 0..2. This is broadened
up further by the second line around mB = 5. The other spots are described in a
better detail as well. However, this comes at a price: the Bessel function J0 has
decreasing maxima. To describe data with invariable maxima, the lines have to
broaden up and in fact, the signs of the coefficients are alternating. So the larger
mB gets, the broader the lines will get, and the higher they will become, although
the corresponding fluctuations have a constant size. This means, the relative impact
of the different lines can not be estimated from the radial Bessel projections, but
only in the radial Fourier projections (Fig. 4.16). Hence, the radial Bessel projection
pr(mB) must be seen as complementary information to the radial Fourier projection
pr(m).
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Figure 4.17: Radial Bessel projections of the laser spots shown in Fig. 4.9 - 4.11. A
better separation of the lines can be observed, but the relative impact can not be compared
anymore.

50



Chapter 5

Summary and Outlook

In this work, an algorithm has been developed, that locates the laser spots au-
tonomously and reliably defines an area of interest. No human intervention is nec-
essary and the result is reproducible. This algorithm has successfully been tested
for an independent “control group”.

For the characterization, various parameters have been suggested, that describe
the general form of the laser spot (exponent G of the Super-Gaussian fit function and
the ratio of the semi-axes) as well as the uniformity of the flat-top part. Here, the
most important parameters are the relative standard deviation σaij

/a, that quanti-
fies the height of the inhomogeneities, and the spatial correlation Λ or the relative
covariance %, that classify the spatial distribution and areal extend, thereby sepa-
rating relevant inhomogeneities from noise and small scale structures.

With the weighted Fourier projection p(n), a tool is provided, that measures
azimuthal inhomogeneities according to the area they cover which is equivalent to
their overall impact. Coupled with the complex Fourier projection pc(n), distinctions
can be made on whether these inhomogeneities are on large scale (clustered) or small
scale (evenly distributed with higher local differences). With the help of the radial
Fourier projection pr(m) and/or Bessel projection pr(mB) the radial distribution of
inhomogeneities can be characterized. While the radial characterization is weaker
than the azimuthal, it is also less important, since the radial intensity distribution is
determined mainly by the diffraction pattern, which is again determined by the BSA
size. The BSA size however is chosen as a compromise between thermal emittance
and space charge induced emittance growth, and is therefore no degree of freedom
in the emittance optimization.

Two-dimensional integral transforms have been studied but where dismissed due
to complexity and limited use.

In the next step, the suggested parameters need to be tested for their influence on
the emittance. There are two ways to do this, measurements and simulations. Mea-
surements are probably the inferior option: on the one hand, because for a sufficient
number of measurements with varying spot sizes (and thereby different diffraction
patterns), a lot of accelerator run time needs to be invested. On the other hand, the
spatial distribution of the laser intensity cannot be modified arbitrarily and varia-
tion is very limited for a fixed spot size. The possible small variations are probably
not enough to clarify correlations between emittance and the characterization pa-
rameters. Especially relating the effects on the emittance to individual parameters
will hardly be possible this way. Considering these limitations, it makes little sense
to spend valuable beam time on this. Also, the measured emittance depends on
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various other machine parameters, which were usually varied in past measurements,
while the laser spot remained the same, so these are not useful here. Simulation,
on the other hand, only requires a given laser intensity distribution to calculate
the emittance at a certain point in the accelerator. By generating arbitrary inten-
sity distribution it is possible to a certain degree, to specifically change individual
characterization parameters, which allows systematic studies. At this point, another
problem shows up. The ASTRA simulation software [25] used at PITZ can only sim-
ulate the emission of rotational symmetric distributions. This limitation makes the
systematic testing of the azimuthal Fourier projections p(n) and pc(n) impossible.
As a first step of validation of the other characterization parameters it is possible, to
generate and simulate rotational symmetric intensity distributions, preferably with
c0(r) of the azimuthal Fourier transform of actual laser spots as a profile. Anyway,
these studies have to be used with caution, since azimuthal asymmetries of the ac-
tual spots will have a significant impact on the emittance. Still, these simulations
should provide good estimates at least.

Another important step on the way towards practical applications of the algo-
rithm are high resolution measurements of the quantum efficiency of the photocath-
ode. Details in the analysis of the laser spots, that are smaller than this resolution
cannot have any relevance in further emittance studies. If high resolution mea-
surements suggest, that small scale inhomogeneities of the quantum efficiency are
negligible, interpolated data of rougher existing measurements can be used in prac-
tice. The inclusion of the quantum efficiency into the analysis is possible by simply
multiplying the laser intensity within the AOI with the corresponding quantum ef-
ficiency data. The definition of the AOI based on the laser spots remains sensible,
since the weighting of the flanks is not changed. There is no reason to assume
that the inhomogeneities of the quantum efficiency are subject to patterns like the
diffraction patterns of the laser images, so the introduction of further characteriza-
tion parameters or analyses will probably not be necessary.

Despite the limited options for systematic studies of the individual parameters,
it is very likely, that -with the help of the algorithm and the quantification of the
laser spot characteristics- the operation crew can establish guidelines whereby the
electron beam emittance can be minimized. It is not clear yet, if the application of
these rules will still require the program. If so, the application of the program at
FLASH and XFEL are imaginable, since both have a laser imaging system similar
to PITZ. Though, a longer distance between BSA and lens system results in smaller
diffraction patterns [26], which may require minor adaptations, e.g. the preference
of Λ over %.

52



Bibliography

[1] P. Schmüser, M. Dohlus, and J. Rossbach. Ultraviolet and Soft X-Ray Free-
Electron Lasers. Springer Berlin Heidelberg, 9th edition, 2008.

[2] M. Reiser. Theory and Design of Charged Particle Beams. John Wiley and
Sons, 2nd edition, 2008.

[3] S. Lederer et al. Investigations on the Thermal Emittance of Cs2Te Photo-
cathodes at PITZ. In Proceedings of the 29th International FEL Conference,
Novosibirsk, Russia, 2007.

[4] K. Flöttmann. Note on the Thermal Emittance of Electrons Emitted by Cesium
Telluride Photo Cathodes. TESLA FEL-Report 1997-01, DESY, 1997.

[5] R. A. Powell, W. Spicer, G. Fisher, and P. Gregory. Photoemission studies of
cesium telluride. Phys. Rev. B, 5(8):3987–3995, October 1973.

[6] Y. Ivanisenko. Investigation of Slice Emittance Using an Energy-chirped Elec-
tron Beam in a Dispersive Section for Photo Injector Characterization at PITZ.
PhD thesis, Universität Hamburg, 2012.

[7] M. Quattromini, L. Giannessi, and C. Ronsivalle. Emittance dilution due to
3D perturbations in RF-photoinjectors. In Proceedings of EPAC 2004, Lucerne,
Switzerland, pages 2607–2609, 2004.

[8] M. Quattromini, L. Giannessi, and C. Ronsivalle. Spectral Analysis of Charge
Emission Spatial Inhomogeneities and Emittance Dilution in RF Guns. In
Proceedings of the 2004 FEL Conference, pages 411–414, 2004.

[9] V. Fusco, M. Ferrario, and C. Ronsivalle. Spatial Correlation for Laser Beam
Quality Evaluation. Technical Report SPARC-EBD-07/007, INFN/LNF, 2007.

[10] M. Hänel. Experimental Investigations on the Influence of the Photocathode
Laser Pulse Parameters on the Electron Bunch Quality in an RF - Photoelectron
Source. PhD thesis, Universität Hamburg, 2010.

[11] S. Lederer et al. XPS Investigations on Cs2Te photocathodes of FLASH and
PITZ. In Proceedings of PAC09, Vancouver, BC, Canada, 2009.

[12] V. Miltchev. Investigations on the transverse phase space at a photo injector
for minimized emittance. PhD thesis, Humboldt-Universität zu Berlin, 2006.

[13] G. Asova. Tomography of the electron transverse phase space at PITZ. PhD
thesis, INRNE, BAS, Sofia, Bulgaria, 2012.

53



[14] I. Will and G. Klemz. Generation of flat-top picosecond pulses by coherent pulse
stackingin a multicrystal birefringent filter. Opt. Express, 16(19):14922–14937,
Sep 2008.

[15] S. Weisse et al. TINE Video System: Proceedings on Redesign. In Proc. of
ICALEPCS 2009, 2009.

[16] M. Groß and G. Klemz. Diffraction Effects in the Laser Beam Line at PITZ.
PITZ Collaboration Meeting, October 2011, DESY.

[17] M. Groß. private communication. 2012.

[18] M. Groß. Laser Pointing Stability: Measurement Results. PITZ Physics Semi-
nar, August 2011, DESY.

[19] S. De Silvestri, P. Laporta, V. Magni, and O. Svelto. Solid-state laser unsta-
ble resonators with tapered reflectivity mirrors: the super-gaussian approach.
Quantum Electronics, IEEE Journal of, 24(6):1172 –1177, jun 1988.

[20] R. J. Barlow. Statistics - A Guide to the Use of Statistical Methods in the
Physical Sciences. John Wiley and Sons, 1989.

[21] V. Fusco. private communication. 2012.

[22] G. N. Watson. A treatise on the theory of the Bessel functions. Cambridge
University Press, 2nd edition, 1922.

[23] G. B. Arfken and H. Weber. Mathematical methods for physicists. Har-
court/Academic Press, 5th edition, 2001.

[24] J. Lundgren. ZEROBESS. http://www.mathworks.com/matlabcentral/
fileexchange/26639-zerobess, 2011.

[25] K. Flöttmann. A space charge tracking code - ASTRA. http://www.desy.de/
~mpyflo/.

[26] G. Klemz. private communication. 2013.

54

http://www.mathworks.com/matlabcentral/fileexchange/26639-zerobess
http://www.mathworks.com/matlabcentral/fileexchange/26639-zerobess
http://www.desy.de/~mpyflo/
http://www.desy.de/~mpyflo/


Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Berlin, den 20.03.2013 Roman Martin

55


	Introduction
	The Photo Injector Test facility in Zeuthen (PITZ)
	The photoinjector beamline
	The PITZ Laser system
	Laser beam line and diagnostics
	Analysis of the transverse laser profile

	The Area of Interest
	One-dimensional approach
	Two-dimensional fitting
	Filtering

	Laser beam characterization
	Spatial Correlation
	Expansion in Fourier and Bessel series

	Summary and Outlook

