Emittance optimization for various machine parameters at PITZ.

PITZ 1.8 setup

Parameters for optimization

Optimization results for 1nC, 0.25, 0.1 nC, 0.02 nC and 2 nC bunch charges

Summary

Grygorii Vashchenko DPG-Frühjahrstagung 2013 Dresden, 04-08.03.2013

5.74 m downstream from the cathode

Optimization parameters

Parameter	Value	Value	Value	Value	Value	Unit
Bunch charge	1	0.25	0.1	0.02	2	nC
Flat top laser temporal profile, FWHM	[20;45]	[20;45]	[20;45]	[14;40]	[20;45]	ps
Flat top laser temporal profile, rt/ft	2	2	2	2	2	ps
Uniform laser transverse profile, rms	[0.35;0.6]	[0.15;0.3]	[0.09;0.21]	[0.035;0.11]	[0.55;0.71]	mm
Gun on-axis peak field	61	61	61	61	61	MV/m
Gun phase w.r.t. MMMG phase	[-8;8]	[-8;8]	[-8;8]	[-8;8]	[-8;8]	Deg
Main solenoid current	[370;400]	[360;400]	[360;400]	[360;400]	[360;400]	А
Booster on-axis peak field	[0;25]	[0;25]	[0;25]	[0;25]	[0;25]	MV/m
Booster phase w.r.t. MMMG phase	0	0	0	0	0	deg

Emittance for 1nC bunch charge.

Emittance for 250pC bunch charge.

Emittance for 100pC bunch charge.

Emittance for 20pC bunch charge.

Emittance for 2nC bunch charge.

Emittance dependence on charge.

Grygorii Vashchenko | DPG-Frühjahrstagung 2013 | 04-08.03.2013 | Seite 9

Emittance dependencies on different parameters

Systematic errors estimation

- PITZ
- Booster accelerating gradient: <5 % for ±1 MV/m that corresponds to 800 KeV/c => Experimental precision: <100 KeV/c => neglected.
- Rms laser spot size on the cathode: <5 % for ±0.1 mm => Experimental presicion
 <0.025 mm => neglected.

Charge	Systematic error, %				
2 nC	<8%				
1 nC	<12%				
250 pC	<12%				
100 pC	<25%				
20 pC	<40%				

Summary

- Detailed simulations for 2nc, 1nC, 0.25nC, 0.1nC and 0.02nC bunch charges are performed for a wide range of machine parameters.
- Possible systematic errors during experiments increase with a charge.
- Optimum emittance values at laser pulse length of 21.5 ps are presented in table.

Parameter	2nC	1nC	0.25nC	0.1nC	0.02nC	Unit
ε _n	1.14	0.61	0.24	0.13	0.041	mm mrad
ε _{th} /ε _n	0.44	0.56	0.63	0.65	0.73	
<e<sub>slice></e<sub>	1.04	0.57	0.22	0.12	0.037	mm mrad
I _p	80.3	43.1	11.8	4.9	1.0	А

Thank You for attention.

