# Normal-conducting RF Photo Injectors for Free Electron Lasers

#### Frank Stephan (DESY, Zeuthen site) for the PITZ team

#### Content:

- Introduction: FELs and their electron sources
- Different NC photo injectors
  - at SLAC for LCLS (low average current)
  - at Berkeley for NGLS (high average current)
  - at PITZ for FLASH and European XFEL (medium average current)
- Outlook and Summary





#### **European XFEL - a next generation light source**

The XFEL will deliver:

- > ultra-short pulses (≤ 100 fs)
   → ultra-fast dynamics, "molecular movies"
- ultra-high peak brilliance
   investigations of matter under extreme conditions (Xe<sup>21+</sup>)
- transverse spatial coherence
   imaging of single nanoscale objects, possibly down to individual macromolecules (no crystallisation needed !!)

Why brilliance is ~10E+8 higher ? Synchrotrons:  $P \sim N \cdot e^2$ FELs (coherence):

$$P \sim (N \cdot e)^2 = N^2 \cdot e^2$$
$$N \sim 10E+8$$





#### SASE FEL: How does it work?

# Coherent motion is all we need !!







#### SASE FEL: How does it work?



#### One XFEL key component: → the high brightness electron source

#### Why electron injector is so important .... ???

Any linac based short wavelength, high brilliance light source (e.g. SASE-FELs) contains the following main components:

- electron source





property of linacs: beam quality will DEGRADE during acceleration in linac

➔ electron source has to produce lowest possible emittance !!



#### What is Emittance ?

long.: $\mathcal{E}_{z} \sim (e^{-} \text{ bunch length}) \bullet (energy spread of e^{-} \text{ bunch})$ trans.: $\mathcal{E}_{x,v} \sim (e^{-} \text{ beam size}) \bullet (e^{-} \text{ beam angular divergence})$ 



**E** = 6 dimensional phase space volume occupied by given number of particles



effect of <u>acceleration</u> on transverse emittance (adiabatic damping):

#### Why electron injector is so important ...

• Why emittance must be small ...

## FLASH



- XFEL goal: 0.9 mm mrad@injector = 1.4 mm mrad@undulator
- if even smaller emittance  $\Rightarrow$  new horizons:

shorter wavelength, higher repetition rate





XFEL

#### Situation in 1999

#### ICFA workshop on high brightness beams at UCLA in autumn 1999:

# Summary talk of P. O'Shea (U Maryland, USA) on electron source developments:



#### "Goal for community in next years:

#### Get transverse normalized emittance of 1 mm mrad @ bunch charge of 1 nC !!!"





# **Different NC photo injectors**

- at SLAC for LCLS (low average current)
- at Berkeley for NGLS (high average current)
- at PITZ for FLASH and European XFEL (medium average current)





# **NC RF Gun Design for LCLS**

| pulsed / CW                            | pulsed                         |  |  |
|----------------------------------------|--------------------------------|--|--|
| single bunch charge                    | 1.0 / 0.2 nC                   |  |  |
| single bunch rep rate                  | 120 Hz                         |  |  |
| average current                        | 120 / 24 nA                    |  |  |
| norm. trans. emittance<br>(rms, slice) | 1.0 / 0.8 mm mrad<br>@ 135 MeV |  |  |
| rf frequency                           | 2856 MHz                       |  |  |

modified UCLA/BNL/SLAC 1.6 cell S-band gun:

- larger mode separation (3.5  $\rightarrow$  15 MHz)
- larger iris radius, reduced iris surface field
- dual rf feed, z coupling, racetrack shape
- field probes in both cells
- increased cooling channels
- klystron pulse shaping  $\rightarrow$  reduced dissipated power

→improved emittance and stability



#### From Paul Emma, "First Lasing"-talk at FEL2009 in Liverpool: **Injector Transverse Projected Emittance ~0.5 µm**

**Exceptional beam** quality from S-band Cu-cath. RF gun...

focusina solenoid

cathode flange

# Time-sliced x-emittance: $0.4 \,\mu\text{m}$



#### From Paul Emma, "First Lasing"-talk at FEL2009 in Liverpool: Measurements and Simulations for 20-pC Bunch at 14 GeV MEASURED SLICE EMITTANCE SIMULATED FEL PULSES





**Simulation** at 1.5 Å based on measured injector & linac beam & *Elegant* tracking, with CSR, at 20 pC.



linac beam & Elegant tracking, with CSR & 20 pC.

#### Some more experimental results from the LCLS gun:

> Phy.Rev. ST AB **11**, 030703 (2008):

**1 nC**, 100A bunch, 135 MeV:  $\varepsilon_{n, x}$  (95%) = 1.14 mm mrad,  $\mathcal{E}_{n,v}(95\%) = 1.06 \text{ mm mrad}$ 

P. Emma, "Beam Brightness Measurements in the LCLS Injector", Mini-WS on compact XFELs using HBB, LBNL, Berkeley, USA, 2010.

Best Proj. Emittance Measurements at 0.25 nC (35 A) 0.25 nC, 35A, 135 MeV



First day new drive laser was used...

 $\mathcal{E}_{n, x}$  (95%) = 0.32 mm mrad,

 $\epsilon_{n, v}$  (95%) = 0.39 mm mrad





J. Frisch, "Operation and Upgrades of the LCLS", LINAC2010, Tsukuba, Japan: 0.02 nC, 135 MeV:  $\varepsilon_{n, x}(95\%) = 0.18 \text{ mm mrad}, \ \varepsilon_{n, y}(95\%) = 0.19 \text{ mm mrad}$ 

Frank Stephan | NC RF photo injectors for FELs | LA3NET Workshop, CERN

# **Different NC photo injectors**

- at SLAC for LCLS (low average current)
- at Berkeley for NGLS (high average current)
- at PITZ for FLASH and European XFEL (medium average current)





## Berkeley approach: NC RF gun design for CW operation (1)

#### **Design requirements**

### $\rightarrow$ high duty cycle, high average beam current, low emittance:

- repetition rate: up to ~1 MHz, CW
- bunch charge: from ~1 pC to ~1 nC,
- normalized beam emittance: from sub 10<sup>-7</sup> (low charge) to 10<sup>-6</sup> m,
- beam energy at the gun exit:  $\geq -500$  keV (space charge),
- electric field at the cathode:  $\geq \sim 10 \text{ MV/m}$  (space charge limit),
- bunch length control at cathode: from ~1ps to 10s of ps (to handle space charge effects, for allowing different modes of operation),

module

slots

lon pump

low RF

frequency

- compatibility with magnetic fields in the cathode and gun regions (mainly for emittance compensation) Pumping
- operational vacuum pressure: 10<sup>-9</sup> 10<sup>-11</sup> Torr (high QE photo-cathodes),
- "easy" installation and conditioning of different kind of cathodes,
- high reliability compatible with the operation of a user facility.

(from Journal of Modern Optics, Vol. 58, No. 16, 1419-1437)

### Berkeley approach: NC RF gun design for CW operation (2)

| pulsed / CW                            | CW                        |  |  |  |
|----------------------------------------|---------------------------|--|--|--|
| single bunch charge                    | 0.01 to 1 nC              |  |  |  |
| single bunch rep rate                  | up to 1 MHz               |  |  |  |
| average current                        | up to 1 mA                |  |  |  |
| norm. trans. emittance<br>(rms, slice) | < 1.0 mm mrad<br>(design) |  |  |  |
| rf frequency                           | 187 MHz                   |  |  |  |









# Berkeley approach: NC RF gun design for CW operation (3)



#### The following design parameters have already been demonstrated at Berkeley:

- full conditioning to max. RF power (100kW in CW mode, allow for 750keV beam energy)  $\sqrt{}$
- max dark current ~8µA @ 19.5MV/m  $\rightarrow$  should be OK for high rep rate FEL operation  $\sqrt{}$
- first photoelectrons at 1 MHz from temporary molybdenum cathode  $~\sqrt{}$
- beam energy: 745 ± 41 keV  $\sqrt{}$
- cathode field: >10 MV/m  $\sqrt{}$
- pressure: ~5x10<sup>-11</sup> Torr after baking (RF off, 1 of 20 NEG modules activated)

(factor 3-4 higher with RF on)

(from PRST-AB 15, 103501 (2012))



# **Different NC photo injectors**

- at SLAC for LCLS (low average current)
- at Berkeley for NGLS (high average current)
- at PITZ for FLASH and European XFEL (medium average current)





# The PITZ gun (Photo Injector Test facility at DESY, Zeuthen site)



Capable of high average power  $\rightarrow$  long electron bunch trains (SC linac)  $\rightarrow$ 

Very low normalized transverse emittance



#### Some parameters of FLASH and European XFEL



|                                    | FLASH       | European XFEL |
|------------------------------------|-------------|---------------|
| final beam energy                  | 1.2 GeV     | 17.5 GeV      |
| max. repetition rate               | 10 Hz       | 10 Hz         |
| max. train length                  | 800 µs      | 650 µs        |
| bunch spacing                      | 1 – 20 µs   | 0.2 – 1 µs    |
| required injector emittance (1 nC) | 2 mm mrad   | 0.9 mm mrad   |
| SASE output wavelength             | 4.1 – 45 nm | 0.05 – 6.4 nm |









#### Improvement of the RF gun phase stability (gun has no field probe)





DESY

#### How we measure the transverse projected emittance

#### Single slit scan technique

- Emittance Measurement SYstem (EMSY) consists of horizontal / vertical actuators with
  - YAG / OTR screens
  - 10 / 50 μm slits
- > Beam size is measured @ slit position using screen

pixel intensity

Beam local divergence is estimated from beamlet sizes @ observation screen (12 bit camera)





value

**2D corrected normalized RMS emittance** 

$$\mathcal{E}_{n} = \underbrace{\sigma_{x}}_{\sqrt{\langle x^{2} \rangle}} \beta \gamma \sqrt{\langle x^{2} \rangle \cdot \langle x'^{2} \rangle} - \langle xx' \rangle^{2}$$

**correction factor ( >1 )** introduced to correct for low intensity losses from beamlet measurements

 $\boldsymbol{\sigma_{x}}$  - RMS beam size measured with YAG screen at slit location

**SQRT(<x<sup>2</sup>>)** - RMS beam size at slit location estimated from slit positions and beamlet intensities

"100% RMS emittance"

(conservative estimate)

#### High stability of the measurement



Example, measurement on 5.5.2011: 1nC, Emittance vs. Imain (gun SP phase=6deg)

#### For all measurements f250 lenses and 2x2 binning were used

| 398 | 0.567 | 0.501 | 1.104 | 0.739 | 0.533 | 2 | 23 | 2 | 22 | 16 | 25 | 1.034 | 0.892 | 15 | 25 | 1.068 | 0.812 | 1.5 | 1.3 |
|-----|-------|-------|-------|-------|-------|---|----|---|----|----|----|-------|-------|----|----|-------|-------|-----|-----|
| 397 | 0.359 | 0.367 | 0.732 | 0.583 | 0.363 | 1 | 25 | 1 | 24 | 10 | 25 | 0.719 | 0.650 | 10 | 25 | 0.725 | 0.616 | 1.3 | 1.2 |
| 396 | 0.307 | 0.320 | 0.722 | 0.479 | 0.313 | - | 21 | - | 21 | 5  | 25 | 0.689 | 0.584 | 7  | 24 | 0.705 | 0.529 | 1.5 | 1.3 |
| 395 | 0.285 | 0.279 | 0.770 | 0.424 | 0.282 | 1 | 18 | 1 | 18 | 3  | 25 | 0.779 | 0.571 | 5  | 25 | 0.774 | 0.492 | 1.8 | 1.6 |
| 394 | 0.269 | 0.254 | 0.816 | 0.408 | 0.261 | 1 | 15 | 1 | 16 | 3  | 25 | 0.882 | 0.646 | 5  | 24 | 0.848 | 0.513 | 2.0 | 1.7 |
| 393 | 0.266 | 0.234 | 0.940 | 0.453 | 0.249 | 1 | 13 | 1 | 15 | 4  | 23 | 1.015 | 0.723 | 5  | 25 | 0.977 | 0.572 | 2.1 | 1.7 |

 $\epsilon_x = (0.707 \pm 0.032) \text{ mm mrad}$   $\epsilon_y = (0.686 \pm 0.024) \text{ mm mrad}$  $\epsilon_{xy} = (0.697 \pm 0.026) \text{ mm mrad}$ 



#### Emittance vs. Laser Spot size for various charges in 2011



#### **Minimum emittance**

| Charge,<br>nC | PITZ,<br>100%,<br>mm mrad | LCLS,<br>95%<br>mm mrad |
|---------------|---------------------------|-------------------------|
| 2             | 1.25                      |                         |
| 1             | 0.70                      | 1.10                    |
| 0.7           |                           | 0.80                    |
| 0.25          | 0.33                      | 0.35                    |
| 0.1           | 0.21                      |                         |
| 0.02          | 0.12                      | 0.19                    |

 PITZ is setting a new benchmark for minimum emittance at a given charge + is capable of operation at fairly high duty cycle !!

LCLS data:

P. Emma, "Beam Brightness Measurements in the LCLS Injector", Mini-WS on compact XFELs using HBB, LBNL, Berkeley, USA, 2010.

J. Frisch, "Operation and Upgrades of the LCLS", LINAC2010, Tsukuba, Japan.

PITZ data:

• M. Krasilnikov et. al., "Experimentally minimized beam emittance from an L-band photoinjector", PRST-AB 15, 100701 (2012).

#### **Core Emittance for various bunch charges**

Idea: Cut low intensity region of MEASURED phase space (i.e. remove



#### 2011 PITZ 1.8: measurements vs. simulations



#### Reasons of discrepancy for high Q? $\rightarrow$ Emission from the cathode?



- Direct plug-in machine settings into ASTRA does not produce 1nC at the gun operation phase (+6deg), whereas 1nC and even higher charge (~1.2nC) are experimentally detected
- Simulated (ASTRA) phase scans w/o Schottky effects (solid thick lines) have different shapes than the experimentally measured (thin lines with markers)

1.6 measured charge (XYrms=0.3mm, 0deg) 1.4 С simulated charge (XYrms=0.3mm, 0deg) charge@LOW.ICT1, 1.2 1.0 0.8 0.6 0.4 bunch 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 ~ laser intensity, nC

Measured and simulated laser energy scan (1nC)

• Laser intensity (LT) scan for the MMMG phase (red curve with markers) shows higher saturation level, whereas the simulated charge even goes slightly down while the laser intensity (Qbunch) increases

# Photo emission (bunch charge) needs more detailed modeling in simulations.





#### Key components for successful operation of NC RF photoinjectors

#### > good RF stability

- > good cooling water stability (increasingly difficult for high average RF power)
  - e.g. better than ±0.05 degrees are needed at 50 kW average power for the PITZ case
- robust and high quantum efficiency (QE) photo cathodes (especially important for high average current)
  - e.g. the PITZ photo cathode system was developed by INFN-LASA Milano
     → see talk of Daniele Sertore

#### > stable photo cathode laser system with high flexibility

- e.g. the PITZ photo cathode laser system was developed by the Max-Born-Institute in Berlin
  - $\rightarrow$  see talk of Ingo Will
- High flexibility of photo cathode laser opens new research possibilities
   → excursion to plasma acceleration
- fancy shaping of the photo cathode laser pulses can further improve the beam quality





#### Photo cathode laser system installed at PITZ



#### Photo cathode laser: temporal pulse shaping

#### (for more MBI see I. Will)

#### Multicrystal birefringent pulse shaper containing 13 crystals

Gaussian:







#### Simulated pulse-stacker





birefringent shaper, **13** crystals

# → important for good beam quality → high flexibility → new options !



#### Particle driven plasma wakefield acceleration (PDPWA)



### LAOLA @ PITZ: Studies for Particle Driven Plasma Acceleration

- 1) Self-modulation of electron beam (proof of principle for CERNs AWAKE exp.)
  - use high flexibility of photo cathode laser system:



Example: flat-top e-beam through plasma cell:



#### 2) Study high transformer ratio

- resonantly drive plasma wave with specially shaped electron bunch (5 bunchlets inside the bunch)
- $\rightarrow$  high transformation ratio:



#### to be sent to bunch compressor





### New option for the photo cathode laser $\rightarrow$ 3D ellipsoid



#### > Benefits from 3D ellipsoidal laser pulses for ALL linac driven light sources:

- 30-50% lower average slice emittance → higher brilliance
- ~pure sinusoidal longitudinal phase space +3<sup>rd</sup> harm. → simplify/allow required compression
- ~no beam halo → better signal/noise, reduced radiation damage
- less sensitive to machine settings → higher stability

#### Summary

- Normal conducting RF photo injectors are a mature and reliable technology to produce high brightness beams for FEL applications
- From low to medium average currents (~30µA) a new benchmark in optimizing photo injector performance was demonstrated

TABLE IV. Core *xy* emittance (mm mrad) measured for various bunch charges and gun phases. Only statistical errors are shown (see text).

| Bunch charge | Gun phase | 0%                | Charge cut 5%     | 10%               | 20%               |                            |
|--------------|-----------|-------------------|-------------------|-------------------|-------------------|----------------------------|
| 2.0 nC       | 0 deg     | $1.558 \pm 0.050$ | $1.324 \pm 0.045$ | $1.173 \pm 0.039$ | $0.936 \pm 0.031$ | from                       |
| 2.0 nC       | 6 deg     | $1.251 \pm 0.064$ | $1.064 \pm 0.054$ | $0.939 \pm 0.048$ | $0.728 \pm 0.037$ |                            |
| 1.0 nC       | 0 deg     | $0.833 \pm 0.038$ | $0.711 \pm 0.033$ | $0.629 \pm 0.029$ | $0.511 \pm 0.024$ | IVI. Kraslinikov et al.,   |
| 1.0 nC       | 6 deg     | $0.696 \pm 0.020$ | $0.596 \pm 0.017$ | $0.529 \pm 0.015$ | $0.427 \pm 0.013$ | PRST-AB <b>15</b> , 100701 |
| 0.25 nC      | 0 deg     | $0.328 \pm 0.010$ | $0.289 \pm 0.009$ | $0.260 \pm 0.008$ | $0.213 \pm 0.006$ | (2012).                    |
| 0.10 nC      | 0 deg     | $0.212 \pm 0.006$ | $0.188 \pm 0.006$ | $0.170 \pm 0.006$ | $0.141 \pm 0.006$ |                            |
| 0.02 nC      | 0 deg     | $0.121 \pm 0.001$ | $0.108\pm0.001$   | $0.098 \pm 0.001$ | $0.082 \pm 0.002$ |                            |

- ➤ For high duty cycle / CW applications the main challenges (cooling, vacuum properties) can be solved → see Berkeley approach
- High brightness photo injectors are also interesting beyond FEL applications, e.g. plasma acceleration, electron diffraction (REGAE), ...
- Sincere Acknowledgements: to all international colleagues for discussions over the years, colleagues at Hamburg and Zeuthen, the PITZ team, ...



