Simulation of the different type of measurement with the RF deflecting structure at PITZ

- 1. PITZ2.0 design, new components
- 2. TDS basic principle, resolution and limitation
- 3. Longitudinal phase space measurement
- 4. Bunch length measurement
- 5. Slice emittance measurement
- 6. Summary

Dmitriy Malyutin

Forschungsseminar SS 2012 Humboldt-Universität zu Berlin 8th of June 2012

PITZ2.0 design

Main parameters:

Bunch charge	1 pC 2 nC
Repetition rate	10 Hz
Beam energy after gun	1 7 MeV
Beam energy after booster	1 27 MeV
Number of bunches	1 800
Bunch spacing	1 us
Laser pulse temporal shape	2 ps Gauss 22 ps flat-top

PITZ2.0 design

TDS in the PITZ beamline

TDS basic principles

$$y = \theta \cdot L = \frac{eV_0k}{pc} \cdot z \cdot L = S \cdot z,$$
$$eV_0k$$

$$S = \frac{b}{pc}L$$
, in case of drift space

$$S = \sqrt{\beta(s) \cdot \beta(s_0)} \cdot \sin(\Delta \psi_y) \cdot \frac{eV_0k}{pc}$$

where z – slice longitudinal position, L – distance between TDS and screen, V_0 – deflecting voltage, k – wave number, pc – beam momentum, S – shear parameter, y – slice vertical position at screen

in the general case, where $\beta(s)$ - beta function at screen, $\beta(s_0)$ – beta function at TDS position, $\Delta \psi_y$ - beta function phase advance between TDS and screen.

TDS Longitudinal resolution

 $\begin{array}{l} \Delta z - \text{slice length} \\ V(t) - \text{deflecting voltage (artistic view)} \\ \beta(s_0) - \text{beta function inside TDS} \\ \beta(s) - \text{beta function at screen} \\ \Delta \psi_y - \text{beta function phase advance} \\ Yrms - \text{slice vertical RMS size at screen} \end{array}$

 $y = S \cdot z; Yrms^{2} = \varepsilon\beta(s) + (S \cdot \Delta z)^{2},$ $y \ge Yrms,$ $S \cdot z \ge \sqrt{\varepsilon\beta(s) + (S \cdot \Delta z)^{2}},$

for $\Delta z \rightarrow 0$, we will get resolution length σ_z as:

$$\sigma_{z} = \frac{\sqrt{\varepsilon\beta(s)}}{S} = \frac{\sqrt{\varepsilon_{N,y}/\gamma}}{\sqrt{\beta(s_{0})} \cdot \sin(\Delta\psi_{y})} \cdot \frac{pc}{eV_{0}k}$$

TDS Longitudinal resolution

$$\sigma_{z} = \frac{\sqrt{\varepsilon\beta(s)}}{S} = \frac{\sqrt{\varepsilon_{N,y}/\gamma}}{\sqrt{\beta(s_{0})} \cdot \sin(\Delta\psi_{y})} \cdot \frac{pc}{eV_{0}k}$$

For TDS deflecting voltage 0.6MV parameter S will be about 3.2, and for transverse RMS beam size 0.3 mm at screen (TDS OFF), longitudinal resolution will be 0.1 mm or 0.3 ps.

PITZ bunch typical parameter:

- charge: 1 nC
- length: 8 mm (24 ps)

TDS induced energy gain?

TDS induced energy spread

Simulation of the different type of measurement with the RF deflecting structure at PITZ

- 1. PITZ2.0 design
- 2. TDS basic principle and resolution
- 3. Longitudinal phase space measurement
- 4. Bunch length measurement
- 5. Slice emittance measurement
- 6. Conclusion and outlook.

TDS measurement setup

TDS beam optics, emittance and beam size

TDS calibration

TDS calibration, beam position versus RF phase

TDS longitudinal phase space measurement

Summary

- TDS longitudinal resolution for 0.6 MV deflecting voltage 0.3 ps.
- TDS induced slice energy spread is about 15 keV.

Simulation of the different type of measurement with the RF deflecting structure at PITZ

- 1. PITZ2.0 design
- 2. TDS basic principle and resolution
- 3. Longitudinal phase space measurement
- 4. Bunch length measurement
- 5. Slice emittance measurement
- 6. Conclusion and outlook.

Beam optics, ASTRA simulation, 1nC

TDS calibration at PST.Scr1, 1nC bunch charge

First screen after TDS at 12.238m (PST.Scr1), 1nC

20

10

-10

-20∟ -20

-10

 σ_z = 25um = 80fs

[]]] (

20

 $V_0 = 0.0 MV$

Screen image

0

X, [mm]

Xrms = 0.21mm

Yrms = 0.05mm

10

20

10

-10

-20└ -20

-10

Y, [mm]

 σ_z = 12um = 40fs

Bunch longitudinal profile, 1nC

Blue line – bunch longitudinal profile at screen position Red line – vertical profile of bunch image at screen scaled with S = 4.1.

Simulation with 100pC, special profile

Beam optics, ASTRA simulation, 100pC

TDS calibration at PST.Scr1, 100pC bunch charge

First screen after TDS at 12.238m (PST.Scr1), 100pC

Bunch longitudinal profile, 100pC

Blue line – bunch longitudinal profile at screen position Red line – vertical profile of bunch image at screen Scaled with S = 4

Conclusion

- Measured bunch longitudinal profile looks identical to the real one (both are results of simulation).
- Achievable longitudinal resolution is 6um or 20fs for 100pC bunch, and 12um or 40fs for 1nC bunch charge.

Simulation of the different type of measurement with the RF deflecting structure at PITZ

- 1. PITZ2.0 design
- 2. TDS basic principle and resolution
- 3. Longitudinal phase space measurement
- 4. Bunch length measurement
- 5. Slice emittance measurement
- 6. Conclusion and outlook.

Quad scan (H1.Q6) with TDS deflecting voltage 1.2 MV.

Beam optics, ASTRA simulation, 1nC

TDS calibration at PST.Scr1, 1nC bunch charge

Quad scan (H1.Q6) with TDS deflecting voltage 1.2 MV.

Quad scan summary

Quad scan summary, compare results

Longitudinal resolution

Slice resolution, slice length Zrms and stripe width dY

Conclusion

- Slice emittance measurement simulation done in ASTRA for 1nC bunch charge
- > Achieved longitudinal resolution is about 0.1mm* (RMS), which gives us about 80 slices per bunch.

*for Gaussian distribution RMS = 0.1 mm corresponds to FWHM = 0.24 mm

Summary

- Simulation of the longitudinal phase space measurement, bunch length measurement and slice emittance measurement were done with the ASTRA simulation code.
- > Simulated results are in good agreement to what was expected.
- > Achievable resolutions are:
 - 0.3 ps (0.1 mm) for longitudinal phase space measurement
 - 0.04 ps (0.012 mm) for bunch length measurement
 - 0.3 ps (0.1 mm) for slice emittance measurement

