Transverse Deflecting Cavity for the Photo Injector Test Facility (PITZ)

PITZ review, main accelerator elements Emittance definitions and measurement techniques TDS Simulations

> Dmitriy Malyutin Research seminar 12th of November 2010

PITZ 2.0 setup

PITZ 2.0 setup - Gun

PITZ tunnel

PITZ photo gun

Typical output electron beams

1 nC

20 ps

50 A

6.5 MeV

60 MeV/m

Dmitriy Malyutin | Research Seminar | 12th of November 2010 | Page 5

PITZ Laser parameters

Parameters	PITZ/FLASH	European XFEL
bunch charge	1 nC	1 nC
max. repetition rate	10 Hz	10 Hz
max. train length	800 μs	650 μs
bunch spacing	1 µs	0.2 – 1 μs

PITZ 2.0 setup - Booster

CDS booster (Cut Disk Structure)

Scheme of the booster structure:

- 1 regular cells,
- 2 RF coupler cell,
- 8 ion pumps,
- 11 support and adjustment.

Operating frequency	1300 MHz
Maximum acceleration gradient	14 MeV/m
Maximum energy gain	20 MeV
Pulse duration	900 us

PITZ 2.0 setup - EMSY

Transverse Phase Space, Emittance

Slit emittance measurement technique

Beamlet image grabbing during continuously moving the slit

Slit emittance measurement technique

Scaled Transverse Emittance

2D Scaled normalized RMS emittance

$$\varepsilon_{n} = \beta \gamma \frac{\sigma_{x}}{\sqrt{\langle x^{2} \rangle}} \sqrt{\langle x^{2} \rangle \cdot \langle x'^{2} \rangle - \langle xx' \rangle^{2}}$$

 σ_x is the RMS beam size measured at the slit location.

 $\sigma_x / \sqrt{\langle x^2 \rangle}$ is introduced to correct for low intensity losses from the beamlet

measurement.

Transverse emittance measurements results

PITZ 2.0 setup – Phase Space Tomography

Tomography module

- > Resolve both transverse planes simultaneously
- > Design for 15-30 MeV/c, 1 nC
- > Stringent alignment tolerances
- > Slow and complicated analysis

Tomography: Basic idea

- > equidistant angular steps between the screens for both planes (2D)
- > rms spot size is unchanged
- > the data treatment assumes linear transport between the screens

$$\varepsilon_n(\Delta z_i) = \beta \gamma \sqrt{\left\langle x(\Delta z_i)^2 \right\rangle \cdot \left\langle x'(\Delta z_i)^2 \right\rangle - \left\langle x(\Delta z_i) x'(\Delta z_i) \right\rangle^2}$$

Dmitriy Malyutin | Research Seminar | 12th of November 2010 | Page 18

Longitudinal phase space

 $\left\langle z^2 \right\rangle$ and $\left\langle p z^2 \right\rangle$ are the second central moments of the electron

beam distribution in the trace phase.

$$\langle z \cdot pz \rangle$$
 covariance.

PITZ 2.0 setup - TDS

Engineering design of TDS

TDS: Basic idea

Electromagnetic fields for whole structure

Dmitriy Malyutin | Research Seminar | 12th of November 2010 | Page 23

Frequency	3 GHz
Numbers of cells	16
Deflecting Voltage	0.2 – 1.7 MV (2.5MW)
Pulse duration	0.7 – 3.1 us
Filling time	< 120 ns
Filling + decay time	< 200 ns

TDS and Tomography section for slice emittance

TDS and dipole for longitudinal phase measurements

for different TDS phase, blue – 0 degree, green – 10 degree, red – 20 degree.

Conclusion

TDS structure at PITZ will allow to measure:

- slice transverse emittance, with slice resolution better then 1ps
- longitudinal phase space (longitudinal emittance), with time resolution better then 1ps.

Projected transverse emittance

$$\epsilon_{x,\mathrm{rms}} = \sqrt{\langle x_0^2 \rangle \langle x_0'^2 \rangle - \langle x_0 x_0' \rangle^2}$$

Twiss parameters

$$\begin{pmatrix} \beta_{x_0} \\ \alpha_{x_0} \\ \gamma_{x_0} \end{pmatrix} = \begin{pmatrix} \langle x_0^2 \rangle / \epsilon_{x, \text{rms}} \\ - \langle x_0 x_0' \rangle / \epsilon_{x, \text{rms}} \\ \langle {x_0'}^2 \rangle / \epsilon_{x, \text{rms}} \end{pmatrix}$$

Basic idea: image size and resolution

$$\theta = \frac{F \cdot dt}{\gamma \cdot m \cdot \beta \cdot c} = \frac{e \cdot E_0 \cdot \sin(\omega \cdot t) \cdot dt}{\gamma \cdot \beta \cdot m \cdot c} = \frac{e \cdot E_0 \cdot \omega \cdot \frac{L_B}{2 \cdot \beta \cdot c} \cdot \frac{L_c}{\beta \cdot c}}{\gamma \cdot \beta \cdot m \cdot c}$$

$$\theta = \frac{e \cdot E_0 \cdot L_c \cdot \pi \cdot f_{RF} \cdot L_B}{\beta^3 \cdot \gamma \cdot m \cdot c^2 \cdot c} = \frac{e \cdot V_\perp \cdot \pi \cdot f_{RF} \cdot L_B}{\beta^3 \cdot E \cdot c}$$

$$Y_{B} = \frac{e \cdot V_{\perp} \cdot \pi \cdot f_{RF} \cdot L_{B}}{\beta^{3} \cdot E \cdot c} \cdot L$$

$$L_{res} = \frac{L_B}{N_{slices}} = \frac{L_B \cdot \sigma_B}{Y_B} = \frac{\beta^3 \cdot E \cdot c \cdot \sigma_B}{e \cdot V_\perp \cdot \pi \cdot f_{RF} \cdot L}$$

CDS booster (Cut Disk Structure)

Operating frequency	1300 MHz
Maximum accelerator gradient	14 MeV/m
Maximum energy gain	20 MeV
Pulse duration	900 us

Scheme of the booster cavity.

- 1 regular cells,
- 2 RF coupler cell,
- 4 -RF probes,
- 5 photo multipliers,
- 5a reserve photo multipliers,
- 6 vacuum gauge,
- 6a- reserve vacuum gauge,
- 7 pumping tubes with bellows,
- 8 ion pumps,
- 9 internal cooling circuit outlets,
- 10 outer cooling circuit,
- 11 support and adjustment.

Engineering design of TDS

One cell parameters

L = 34.65mm Rst = 9.0mm Ra = 21.55mm Rb = 55.27mm

