Recent Results and Perspectives of the Low Emittance Photo Injector at PITZ

- Introduction, Layout and Laser System
- Results for the VUV-FEL gun
 (gun prototype #2)
- Results from the next rf gun installed at PITZ (gun prototype #1)
- PITZ 2
- Summary

Collaboration and Layout

Collaborating Institutes:

CCLRC Daresbury,
INFN Frascati,
INR Troitsk,
LAL Orsay,
TU Darmstadt,
YERPHI Yerevan

Laser system from the MBI in Berlin

Temporal and Transverse Laser Profiles

F. Stephan (DESY) for the PITZ Collaboration

VUV-FEL Gun: RF Conditioning Results

RF Power source: 5 MW Klystron

- rf pulse lenght: 900 µs,

repetition rate: 10 Hz

- gradient: 42 MV/m at the cathode (~ 3 MW)

⇒ duty cycle: 0.9 %, average rf power: 27 kW (results only limited by conditioning time)

fulfills VUV-FEL RF parameter requirements

VUV-FEL Gun: Longit. Phase Space

Transverse Emittance Measurements

F. Stephan (DESY) for the PITZ Collaboration

7

VUV-FEL Gun: Transverse Emittance

Start-up requirement of TTF2 is clearly fulfilled !

mm mrad

norm. emittance /

Prototype #1: RF Conditioning Results

goals for the XFEL: ~ 6.5 MW, \leq 650 $\mu s,$ 10 Hz

conditioning results obtained in 2004:

limited by 5 MW klystron and water cooling system !!

 \rightarrow upgrade Dec'04

for details

see poster

TUPOS03

– Feb'05

repetition rate	10 Hz	5 Hz	10 Hz
rf pulse length	0.5 ms	1.3 ms	1.0 ms
peak power at gun	4 MW	4 MW	3 MW
mean power	20 kW	26 kW	30 kW
duty cycle	0.5 %	0.65 %	1.0 %

Prototype #1: Longit. Phase Space

Prototype #1: Thermal Emittance

Prototype #1: Transverse Emittance

PITZ 2

 \rightarrow large extension of the facility and its research program

• study emittance conservation principle:

(booster cavity + new diagnostics beam line + beam dynamics)

reach XFEL requirements: 0.9 mm mrad @ 1 nC:

(increased RF field on photo-cathode + improved laser system+ improved photo-cathodes)

• study XFEL parameter space:

(low charge and short bunches + vice versa)

• operate at higher repetition rates:

(more cooling + new RF system + new gun cavity + diagnostics)

Preliminary Layout of PITZ2

How to reach the beam quality required for the XFEL

Goal: 0.9 π mm mrad from the injector for 10 Hz, 650 μ s !!

- upgrades with ~ 40 MV/m at the cathode:
 - improved homegenous transverse laser profile: remote controllable diaphragm close to the cathode

 \Rightarrow En ~ 1.5 mm mrad @ 1 nC

 improved longitudinal laser profile (20 ps FWHM, 2 ps rise/fall time):

> use a broadband laser medium, solve problem of high average power, conserve stability

 \Rightarrow $\epsilon_n \sim 1.2 \text{ mm mrad} @ 1 \text{ nC}$

in addition, with 60 MV/m at the cathode:

 \Rightarrow $\epsilon_n \sim 0.9 \text{ mm mrad} @ 1 \text{ nC}$

Transverse Beam Parameters for the XFEL Injector

Summary

- VUV-FEL gun:
 - minimum normalized emittance (one plane): 1.5 mm mrad
 - minimum geometrical average (both planes): 1.7 mm mrad
 - good agreement with simulations
- next gun installed at PITZ:

- increased rf power: $\langle P \rangle = 30 \text{ kW}$, 1 % duty cycle, P_{peak} = 4 MW, rf pulse lenght = 1.3 ms

- beam characterization ongoing: transverse emittance already improved (~1.3 / ~1.6 mm mrad)
- PITZ 2 will start operation in spring 2005: •
 - further improve emittance from gun
 - study the conservation of small emittance to higher beam energy

