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Abstract. Derived from the Vlasov equation the Ensemble Model [1] has 

been elaborated for fast and efficient beam dynamics simulations. The 

Model represents a particle beam as a set of sub-beams or Ensembles, de-

scribed by coordinates of the centroid and 6D phase space correlations. 

Whereas a space charge routine for the Single Ensemble Model (SEM) 

has been developed and tested [2], implementation of the space charge al-

gorithm for the Multi Ensemble Model (MEM) needs more efforts. A 

space charge model based on the Multi-Centered Gaussian Expansion 

(MCGE) [3] implies a smooth particle density distribution within an En-

semble but it requires rather large computational efforts. This paper pre-

sents another space charge algorithm, based on the analytical solution for 

the electrical field of an ellipsoidal 3D charge distribution [4]. Using this 

algorithm one can calculate the space charge force and its gradient inside 

and outside driving Ensemble. Features of the implementation and simpli-

fying approximations are discussed in this paper. 

1. Introduction 

The Ensemble Model [1] describes a particle beam by set of sub-beams or Ensembles, 

each of them is characterized not only by average position, but also by correlations (or 

moments of the Ensemble distribution function) in 6D phase space. Considering the mo-

ments up to second order one can describe each Ensemble by 27 parameters (6 moments 

of the first and 21 moments of the second order). This implies linear external and internal 

forces inside an Ensemble and therefore, Ensemble emittance invariance [1]. To simulate 

the beam emittance the Multi Ensemble Model (MEM) [2] can be used; nonlinear Lorenz 

force effects can be modeled by a set of Ensembles distributed in the phase space. 

Whereas external force implementation in MEM is straightforward, the space charge 

force algorithm needs more efforts. 
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2. Main Equations of the Ensemble Model 

A beam distribution function could be represented as a superposition of distribution func-

tions of Ensembles: 
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nn prwpr rrrr ,, ψ ,      (1) 

where nw  is related to the Ensemble charge weight function ( 1=∑
n

nw ). Each Ensemble 

is described by 6 first order moments of the distribution function ( )prn
rr,ψ : 
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and by 21 moments of the second order:  
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where },,{, zyx=νξ  and νννξξξ −=∆−=∆ , . 

Assuming Ensemble energy spread small, considering all moments of the distribution 

function till the second order, one can obtain main equation for any Ensemble parameter 

},,,,{ νξνν ξνξξµ pppp ∆⋅∆∆⋅∆∆⋅∆=  [1,2]: 
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where pp rr
⋅+= 1γ  is normalized energy, )(mcPp

rr
=  is normalized momentum, 

ct=τ  and F
r

 is applied Lorentz force. 
Using Lorentz force expansion till linear terms 
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one can obtain 6 time equations for the first order moments ,r pr r : 
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and 21 equations for the second order moments:  
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Elements of the auxiliary matrices VW ˆ,ˆ , used in (7) and (8) are 
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=

++=
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22 ˆ1 Mγ  is squared normalized Ensemble energy. 

 

3. Space Charge Implementation 

Since the Ensemble Model implies internal motion even in the case of the Single Ensem-

ble Model (SEM) collective effects in beam dynamics can be simulated, despite the beam 

emittance remains constant in the SEM, there is a good agreement in beam size and beam 

divergence simulation [2]. 

The space charge implementation makes an Ensemble charge distribution function an 

important issue. The rigorous problem reduces to the determining the stationary 3-D 

charge distribution (which does not explicitly depend on time), which corresponds to the 

linear applied forces. The distribution in which the forces are linear and the phase space 

areas remain constant is known as microcanonical distribution [5]. A homogeneous ( )yx,  

ellipsoidal beam distribution, known as K-V distribution leads to a perfect linear space 

charge force within the beam radius. The space charge model for the Single Ensemble 

Model (SEM) is based on the homogeneously charged ellipsoid. Calculation of the Lo-

renz force gradient at the Ensemble center reduced to obtaining the resulting force at a 
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small offset from the homogeneously charged ellipsoid, one of the aproaches is integra-

tion over thin shell of uncompensated charges [1]. 

In the case of several Ensembles (MEM) it is necessary to calculate not only the space 

charge gradient at the center of the driving Ensemble, but also Lorentz force and its gra-

dient at positions of others Ensembles. The most probable macroparticles configuration is 

a set of overlapping Ensembles. One of the algorithms, based on distribution function 

expansion is Multi-Centered Gaussian Expansion (MCGE) is discussed in [3]. This ap-

proach is based on the expansion of the Ensemble charge density in distributed basis 

functions with known solutions of the field equation. The main advantage of this algo-

rithm is a smoothness of distribution function, but nessesety of solution of linear equation 

system on each integration step for each Ensemble makes this approach comparatively 

slow. 

A model of homogeneously charged 3D ellipsoid being very useful for the calculation of 

the space charge force gradient in the SEM can be extended to MEM. The uniform ellip-

soidal is not a solution of the Poisson-Vlasov system because the corresponding station-

ary distribution in the phase space is singular; nevertheless, it allows one to keep Hamil-

tonian character of the 3D model similar to the dynamics of the full particle system 

(Liouville problem) [4]. 

 

4. Space Charge Field of an Ellipsoidal Ensemble Distribution 

Distribution function of a 3-axis homogeneous ellipsoidal Ensemble is given by 
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where ellipsoid semi-axes and rms sizes are defined by matrix elements (3): 

xxxx Ms 55 22 == σ , yyyy Ms 55 22 == σ , zzzz Ms 222 55 γγσ == . From Newton’s potential 

theory [6] the electric field E
r

 in the Ensemble’s rest frame is given: 

( )zyxi
zyx

i
i aaaG

sss
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= ,      (11) 

where q  denotes the Ensemble charge, λ+= 2
ii sa  is a square of the equivalent confocal 

ellipsoid semi-axis, parameter 0=λ  for internal point of the ellipsoid, otherwise, for an 

external point λ  can be determined as the positive root of the equation: 
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This equation determines one and only one ellipsoid passes through any point ( )zyx ,,  

outside the ellipsoid. A geometrical form factor iG~  ({ }kji ,,  defines any permutation of 

the indices { }zyx ,, ): 
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is constant for internal point of the ellipsoid, so as is well known, the electric field is lin-

ear inside the ellipsoid. For external point ),,( zyxfa ii =  and iG~  determines field decay 

with an offset from the Ensemble center. Equation (12) can be interpreted in the follow-

ing way: at any external point the electric field generated by an ellipsoidal uniform 

charge distribution is equivalent to the electric field generated by a confocal uniformly 

charged ellipsoid passing through the point ),,( zyx . 

The geometrical form factor as a consequence of the Gaussian theorem for the electric 

field satisfies the equality: 

3,,, =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

y

z

x

z

z

y

x

y

z

x

y

x

a
a

a
aG

a
a

a
a

G
a
a

a
aG      (14) 

Assuming that the driving Ensemble has energy 222 1 βγ −== mcmcE , and center 

coordinates { }ddd zyxr ,,=
r , the Lorenz force acting from the driving Ensemble on the 

test particle { }cvcvcvzyx t
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t
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t
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t
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where vector ( ){ }γ⋅−−−=∆ tdtdtddt zzyyxx ,,
r

 takes into account Lorentz transforma-

tion for the coordinates. The matrix XF̂  is given by 
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4.1. Round beam 

In the case of a cylindrical symmetric ellipsoid tyx sss == , the geometrical form factor 

reduces to the well known form factor of the round beam: 
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where zyzx aaaa ==µ . After some algebraic passages one can see that equation (14) 

reads ( ) ( ) 32 =+⋅ µµ round
z

round
xy GG . 

Geometrical form factors inside the round beam ( zyzx aaaa ==µ ) as functions of the 

beam aspect ratio µ  are shown in Fig.1 
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Figure 1. Geometrical form factors of the round beam 

 

To determine field outside the driving Ensemble one should find λ  from the equation: 
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and after the substitution of the equivalent ellipsoid aspect ratio 
λ
λµ
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metric form factors (17) one can obtain the corresponding space charge force: 
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here it should be noticed that za  implicitly contains γ . Matrix elements X
ijF̂ can be ob-

tained from (19) by direct analytical differentiation. An example of space charge field of 

the round beam is plotted in Fig 2. 
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Figure 2. Space charge force of the round ellipsoidal beam (beam energy 

5MeV): a) mmZmmXY rmsrms 9.0,2.0 == ; b) mmZmmXY rmsrms 4.0,3.1 ==  

(pancake like bunch). 
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where kAemcI A 17/3 ≈=  is the Alfven current, zcqI σβ /
4
3

=  is driving Ensemble cur-

rent. 
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For the round coasting (i.e. unbunched) beam 0→µ , and these expressions take well 

known form): 
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where ( ) ( )22 dtdt yyxxr −+−= . 

 

4.2. Quasi-round beam 
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where it has been assumed δ−≈1
x

y

a
a

. Terms with higher order of  beam asymmetry 

( nδ~ ) can be similarly calculated. 

 

4.3. Elliptic beam 

For the case of elliptic coasting beam ( 0,0 →→ yx µµ ) transverse space charge force 

can be calculated rather easily  
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for the points inside the driving Ensemble yyxx sasa == , , and expressions (23) co-

incide with well known formula for the space charge of the elliptic homogeneous distri-

bution [7]. The formulae (23) are also valid for any external point ),( yx , in this case 

λ+= 2
xx sa , λ+= 2

yy sa , where λ  is a positive root of the equation ( 0=z ): 
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Fig.3 illustrates the field calculation using formulae (23), space charge force plotted as a 

function of transverse coordinates. 
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Figure 3. Space charge force of the elliptic beam: a) round beam 

with mmYX rmsrms 1== ; b) “flat” beam with mmX rms 2=  mmYrms 5.0=  

 

Besides the space charge field (22), the MEM needs also the matrix XF̂  (6), for the ellip-

tic beam the transverse matrix elements are given: 
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the first term in this expression corresponds to the gradient inside the driving Ensemble 

( 0=λ ), the second matrix determines a space charge field gradient outside, and besides 

the diagonal elements it contents also YX −  coupling term. It should be noticed that 

inside the driving Ensemble the space charge force gradient causes growth of a test En-

semble rms size, whereas outside there is a test Ensemble contraction as a result of the 

negative space charge gradient (25). 

 

5. Simulation of the Space Charge Dominated Beam 

For the illustration of the proposed space charge algorithm a space charge dominated 

electron beam (1nC, 5MeV) in drift space has been simulated using Ensemble Model in 

comparison with conventional tracking code (ASTRA) [8]. Initial beam transverse phase 

space of the beam is shown in Fig 4, where equivalent phase space ellipses depict En-

semble parameters. 
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Figure 4. Initial transverse phase space ),( xpx : a) Conventional tracking 

code (ASTRA), 10000 macroparticles; b) Ensemble Model, 50 Ensembles. 

 

Transverse RMS beam size, beam divergence and normilized beam emittance as func-

tions of a flight time are shown in Fig 5 for the case without space charge. The agreement 

between conventional tracking code (ASTRA) and Ensemble Model (even using single 

Ensemble) is very good, whereas computation time is much smaller for the Ensemble 

Model (10 variables for SEM vs. 40000 ASTRA transverse particle coordinates). 
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Figure 5. Simulations of the electron beam in a drift using conventional track-

ing code (ASTRA), SEM and MEM (50 Ensembles) without space charge.  

a) RMS beam size; b) RMS beam divergence; c) RMS beam emittance. 

 

Corresponding dependencies for the case with space charge are shown in Fig. 6. The 

beam size as well as divergence can be simulated with SEM with rather good agreement, 

but for the emittance simulations MEM should be used. 
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Figure 6. Simulations of the electron beam in a drift using conventional 

tracking code (ASTRA), SEM and MEM with space charge. a) RMS beam 

size; b) RMS beam divergence; c) RMS beam emittance. 

 

Resulting phase spaces are shown in Fig. 7. It should be noted that a discrepancy in emit-

tance caused mainly by non perfect interface between conventional macroparticles 

(10000 ASTRA particles) and Ensembles (50 Ensembles in MEM). 
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Figure 7. Final transverse phase space: a) Conventional tracking code 

(ASTRA); b) Ensemble Model. 

 

As it can be seen from Fig. 6b, the RMS beam divergence decreases till the beam waist 

( mz 5.2≈ ), whereas for the case without space charge it is constant (Fig. 5b). It should 

be figure out that this takes place even for the linear space charge algorithm (SEM). From 

the expression (25) for the space charge force one can possible to obtain the matrix ele-

ment ,ˆ
xx

X
xx M

κ
=F  where 

AI
I

βγ
κ

5
2

= . Differential equations for transverse phase space 

take a form: 
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       (26) 

Without solving this nonlinear system one can possible to obtain the following integral: 

)0(
)(ln)0()(

xx

xx
mpppp M

MMM
xxxx

τκγτ += .     (27) 

Hence, applying a space charge force under definite (negative) phase space correlation 

the logarithmic term in (27) is negative (before the focus )0()( xxxx MM <τ ) and rms 

beam divergence decreases as a result of the space charge effect. 

 

6. Conclusions 

Space charge algorithm for the Multi Ensemble Model (MEM) based on the 3-axis ho-

mogeneously charged ellipsoid has been developed. Analytical expressions for the Lo-

renz force and its gradients have been obtained. MEM simulations of the nonlinear ef-

fects in transverse phase space of the space charge dominated beam showed good agree-

ment with conventional tracking code, demonstrating advantage in variable number and 

computational efficiency. 
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