Measurement of the longitudinal phase space at the Photo Injector Test Facility at DESY Zeuthen, PITZ

D. Lipka, J. Bähr, K. Flöttmann, D. Richter*, F. Stephan

DESY, 22603 Hamburg and 15738 Zeuthen, Germany; *BESSY, 12489 Berlin, Germany

Description and scientific goals of the project

A Photoinjector Test Facility for Free Electron Lasers (FEL) and the TESLA linear collider has started operation at DESY Zeuthen. The project is a common effort of a collaboration consisting of the following institutions: BESSY Berlin, DESY (Hamburg and Zeuthen), Max-Born-Institut Berlin, Technical

University Darmstadt It is funded partially by the HGF-Vernetzungsfonds.

Measurement of bunch length

Goal: Convert the electron beam into a photon beam using a Cherenkov radiator and measure the photon pulse length with a streak camera.

Measurement of the refractive index of aerogel in vacuum

Goal: Measure the refractive index n of aerogel at different pressure

Result at different pressure: the refractive index of aerogel, with the same properties as that used in the ring imaging Cherenkov detector at the HERMES experiment in DESY Hamburg, is constant up till the pressure of 1 mbar, above it increases linearly

Longitudinal phase space

Goal: Measure momentum spread, bunch length and their correlation simultaneously by using a dipole, Cherenkov radiator and streak camera

Radiator aerogel: mirror is tilted so that one part of the Cherenkov light is reflected perpendicular to the beam direction. Two electrons which crosses the radiator simultaneously produce photons with a time difference at the vacuum window, the time difference is represented with the angle

Radiator quartz:

quartz will be used too

because of its vacuum

stability. To avoid total

reflection quartz has to

be tilted, it results in a

larger time difference

than for aerogel.

Decrease time difference: 3 options:

Option b: turn the streak camera that the photons hit the internal cathode simultaneously

streak

camera

mirror- $' = \arcsin(n \sin(C - C)) + C$

 $' = \frac{1}{2} (90^{\circ} - ')$ $\tan' = \frac{\sin' + \sin('-')}{\cos('-')}$

beam direction

slit of the streak camera

optical system

(K)-

- Momentum distribution measured with YAG screen
- charge of the electron bunch 30 pC - phase between RF and laser pulse for high electron momentum
- optimized - the measured rms momentum spread of about 13 keV/c represents the resolution limit of the spectrometer due to an optical mismatch which will disappear at higher charges

Radiator parameters:

Radiator and

mirror: opening

large for optical

system, use of a

fraction

angle of light cone too

the table shows the described angles and calculated time resolutions for both considered radiators at

- a momentum of 4 MeV/c
- thickness d is chosen to provide the same amount of emitted photons
- length of one step of the lattice is 50 µm

light cones

- slit width is 100 μm

					Time resolution / ps				
Name	n	d/mm	1 / 0	1 / 0	difference	angle distribution	multiple	lattice	cut with
			,	1	light — electron	of electron bunch	scattering		slit
aerogel	1.01	20.0	43.24	3.49	0.25	0.26	3.98	0.01	0.02
	1.03	2.0	38.91	12.19	0.30	0.30	0.43	0.04	0.07
	1.05	1.0	36.46	17.07	0.29	0.29	0.35	0.05	0.10
quartz	1.46	0.1	10.16	64.04	0.37	0.37	0.41	0.15	0.69

electron

trajectories

Cherenkov radiator

Best time resolution obtained with aerogel n = 1.05. Fused quartz will be used too.