Simulations for a bunch compressor at PITZ

Study of high transformer ratios

G.Asova, A.Oppelt Zeuthen, 22.09.2015

Transformer Ratio (TR)

Bunches with symmetric current profile

W⁺ Fundamental theorem of beam loading

 $\frac{\text{wake potential behind driving bunch}}{\text{wake potentail seen by it}} = \frac{W^+}{W^-} ≤ 2$

How can TR > 2? → Schütt et al. (1989)

symmetric drive bunches with linearly ramped charge density

At PITZ TR ≤ 8

Photo-Injector Test facility at DESY, Zeuthen site

Laser pulse-shaping system based on 13 crystals

- The intensity of the bunches can be varied separately
- Linear increase in the pulse intensity
- Separate control of the intensity of the witness pulse
- > The overall length can't be shorter than 20 ps

The need of a bunch compressor

CSRtrack simulations

Courtesy T. Vinatier

GOAL:

- Electron pulse with modulated charge 10:30:50:70:10 pC
 τ = 1 ps each
- Longitudinally compressed by a factor of 4 at the entrance of the plasma cell
 - > subpulses τ = 250 fs
 - > spacing $\Delta = 1.5$ ps
 - > compression depends on the shape

Lessons learned:

- > separated pulses
- the curvature of the longitudinal phase space is inverted (negative)
- > small energy spread

from the gun booster off-crest phase / 3rd harmonic cavity

booster close to the crest, gradient

Gun optimization

ASTRA simulations

Low energy & longitudinal space charge → pulsed structure degrades

Positive gun phases

- → better separation between the pulses
- → additional cavity can't improve separation
- \rightarrow longer overall pulse, faster increase in δp_z
- → compromise at 17 deg w.r.t. max mean momentum gain

Curvature of the longitudinal phase space

Drive the booster cavity off crest

Major milestones:

decelerated beam, momentum spread

6.2 MeV/c / 1.6% before \rightarrow

3.5 MeV/c / 17.6% after booster

> inverted charge profile

20.5 MeV/c / 3% after booster

→ Additional cavity in front of booster, but SHORT

Only booster or also 3rd harmonic

Only booster

and shorter

$$p_z = 18.9 \text{ MeV/c} \\ \delta p_z = 3\%$$

Gun + booster + BC

Compression cannot be defined in absolute units!

Or

Does not work

Possibilities to separate bunchlets

Increase pulse separation from 6 to 8 ps

 $3^{\rm rd}$ harmonics cavity in front of the booster, $\phi_{\rm gun}$, $\phi_{\rm 3rd\ harmonic}$, $\phi_{\rm booster}$ optimized

Sun at 100 MV/m with the 6 ps

Gun exit

BC entrance

Charge profile kept.

Decreasing bunch charge

5 t [ps]

BC exit

5 t [ps]

Compressing smaller charge density

 $-2.034 \le t \le 2.581 \text{ ps}$

3 pulses "constructed" by hand, smaller charge density

Add the left/right-most pulses

Compression factor of 4 possible.

4-5 pulses impossible if linear ramp starts from the laser.

 $\sigma_z = 1.16 \text{ mm}$ 0.27/0.28/0.31 mm

 $\sigma_z = 0.291 \text{ mm}$ 0.09/0.093/0.082 mm

Outlook

- > Still we have to understand "How do we define compression".
 - each single bunchlet has to be properly compressed
- > Plasma simulations badly needed to see what parameters actually matter.
 - Spacing between pulses is more important than overlap
 - accepeted tolerances in shape/spacing/...
- Adjust the laser profile to what plasma simulations show and try to obtain it with machine settings (back tracking).
- Machine studies for bunchlet transport needed with realistic laser shape (OSS, TDS, HEDA2) also as input for plasma simulations.
- Gregor: parameter space definition.

Pulse separation

A few degree difference in the phases two pulses see

> maybe clear separation if the pulses are moved aside as much as they overlap behind

the gun

3rd harmonic upstream the booster

Correct nonlinearities induced only by the gun

First thought: just linearize (z, pz) @ booster entrance

Gradient compensating only gun

Gradient as if

compensate

it would

booster

t [ps]

 $p_z = 5.1 \text{ MeV/c}$ $\delta p_z = 4.5\%$

$$p_z = 6 \text{ MeV/c}$$

 $\delta p_z = 7\%$

Negative position-energy chirp with the booster

$$p_z = 18.9 \text{ MeV/c} \\ \delta p_z = 3\%$$

Try compression of central slice + one to the right

Cut slice

 $\sigma_{\rm z}$ = 0.768 mm (2.56 ps)

$$\sigma_z = 0.92/0.94 \text{ ps}$$

As the right one compresses more try to change manually the chirp of the left one and then compress? What chirp would deliver better compression?

Again H/T compress differently.

Compression X4 but not on single pulse.

$$\sigma_7 = 0.1922 \text{ mm } (0.64 \text{ ps})$$

$$\sigma_z = 0.31/0.26 \text{ ps}$$

Compressing smaller charge density

 $\sigma_z = 0.19 \text{ mm}$ 0.08/0.09 mm

Rotation to angles smaller than -6 deg -> factor 4 compression reached but with overcompressed tail always!

