

Study and Optimization of 5.1 PITZ RF Gun for the DESY Photo-Injector Test Facility

By: **M. D. Kelisani**

Under Supervision of:

Mikhail Krasilnikov

Deutsche Elektronen-Synchrotron (DESY), Zeuthen, Germany.
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Contents

1. Front Side, Structure and Characteristics

2. Back Side, Structure and Characteristics

3. EM Studies and Simulations, Optimization Against the RF Breakdown

4. Introduction to the New Proposed Structure

1.1 Gun Main Characteristics

Characteristic	Value
Generation	5.1
Cell Number	1.6
Frequency	1.3 GHz-L Band
Type (Material-Wave)	NC-SW
Operation Mode	π
Max Input Power	8 <i>MW</i>
Wave Guide	Coaxial-WR650

1.2 Front Side Geometry

1.2 Front Side Geometry

1.2 Front Side Geometry

Front Side-Geometrical Parameters

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value
<i>a</i> ₁	25.5	b_5	40	g_7	31.95	L ₂	120.5
<i>a</i> ₂	25.5	<i>b</i> ₆	19	${g_8}$	35	L ₃	31.38
<i>a</i> ₃	10	<i>b</i> ₇	15	g_9	18.95	L ₄	173.25
<i>a</i> ₄	27.5	f_1	6.5	h_1	69.87	L_5	82.55
<i>a</i> ₅	40	f_2	2.5	h ₂	25.87	<i>r</i> ₁	95.37
<i>a</i> ₆	10	g_1	4.1	h_3	23.87	<i>r</i> ₂	95.37
a ₇	22	g_2	33	h_4	5.87	<i>r</i> ₃	50
b_1	25.5	g_3	15.69	h_5	15.69	<i>s</i> ₁	25
<i>b</i> ₂	25.5	g_4	10	h ₆	0.01	<i>s</i> ₂	30.5
<i>b</i> ₃	19	g_5	170.75	h ₇	28.24	<i>s</i> ₃	16.75
b_4	27.5	g_6	3.3	L ₁	65.1	θ	45

1.3 Main RF Characteristics

Parameter	Value	Parameter	Value	
ν_c	1.29985 GHz	R _{sh}	7.2 <i>M</i> Ω	
Q_c	25544	$ au_f$	4.3 μs	
β_c	1.9	$V_{acc}(1MW)$	2.5 <i>MV</i>	

Back Side-Geometrical Parameters								
Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value	
i ₁	1	j ₅	2.33	q_5	5.33	<i>w</i> ₃	2.8	
i ₂	1	j ₆	2.5	q_6	3.33	<i>W</i> ₄	2	
i ₃	2	j ₇	0.3	<i>q</i> ₇	0.02	w ₅	0.5	
i ₄	0.5	j ₈	1.17	<i>q</i> ₈	0.5	<i>w</i> ₆	3.5	
i ₅	0.5	j ₉	0.3	<i>q</i> 9	4.66	<i>W</i> ₇	3	
i ₆	2.5	j ₁₀	2.2	q_{10}	1.36	<i>w</i> ₈	2.1	
i ₇	0.3	<i>k</i> ₁	3.1	q_{11}	0.83	W ₉	2.7	
i ₈	0.125	k ₂	2.5	q_{12}	4.67	<i>w</i> ₁₀	0.25	
i ₉	0.3	k ₃	4	<i>q</i> ₁₃	1.17	w ₁₁	2.25	
i ₁₀	2.25	k ₄	10	<i>q</i> ₁₄	1.36	<i>w</i> ₁₂	2.1	
<i>j</i> ₁	1	<i>q</i> ₁	8	q_{15}	0.84	<i>w</i> ₁₃	10.1	
j ₂	0.48	<i>q</i> ₂	0.5	<i>q</i> ₁₆	0.25	<i>w</i> ₁₄	3.97	
j ₃	2	<i>q</i> ₃	2.5	<i>w</i> ₁	2.1	$\alpha_1 = \alpha_2$	33	
j ₄	2	q_4	7	<i>w</i> ₂	0.2	δ	0.025	

1MV/m maximum field gradient

- 1. Close the gap in between the front and the back holders through as much as possible decreasing the value of $w_5 i_8$.
- 2. To avoid of creating any sharp edges which in turns increases the probability of breakdown, we must symmetrize the joint between the holders i.e. points 15 and 20 in figure 7 through letting i_8 and j_8 take the values of i_5 and j_5 , respectively.
- 3. The circular corner at point 26 should be modified to an elliptic form might with relatively large ratio between its radii for having larger curvature. This can be done for instance by selecting i_7 to be 3 time j_7 ($i_7 = 3j_7$) that already was in the form of $i_7 = j_7$.
- 4. Make the cathode corner in between the point 1-2 elliptical and probably for keeping symmetry let it to be exactly similar to the corner in between the points 28-29.
- 5. Enlarge the gap length in between the cathode and the front holder by increasing the value of parameter w_9 in Fig.6.

Closing the gap between the holders and making the corners (except for the cathode) elliptic

Field Distribution-without Spring

20

Back Side-Geometrical Parameters

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value
<i>i</i> ₁	0.95	j ₃	1.0	k_4	5.0	q_{11}	0.2
i ₂	0.87	<i>j</i> ₂	0.5	k_5	2.0	$q_{12}^{}$	0.2
i ₃	1.0	j_4	1.9	k_6	2.0	<i>q</i> ₁₃	0.2
i ₄	0.5	j ₅	0.1	q_1	8	<i>w</i> ₁	0.2
i ₅	0.1	j ₆	2.5	q_2	0.5	<i>w</i> ₂	0.1
i ₆	2.0	j ₇	0.3	q_3	2.5	<i>w</i> ₃	2.7
i ₇	0.3	j ₈	0.52	q_4	5.0	W_4	2.26
i ₈	0.5	j ₉	1.82	q_5	1.5	w ₅	0.59
i ₉	2.0	j ₁₀	0.2	q_6	0.82	<i>w</i> ₆	4.09
<i>i</i> ₁₀	0.1	j ₁₁	0.67	q_7	0.25	<i>W</i> ₇	0.78
<i>i</i> ₁₁	1.0	k_1	3.3	q_8	1.55	<i>w</i> ₈	3.37
<i>j</i> ₁	1.0	k2	2.0	<i>q</i> ₉	1.0	α1	26
<i>j</i> ₂	0.5	k ₃	3.7	<i>q</i> ₁₀	1.0	α2	45

Mesh Structure

31

Thanks for Attention

