Development of a high-power tunable photoinjector-based THz source at PITZ: results and possible next steps

Photo Injector Test facility at DESY in Zeuthen (PITZ): Proof-of-Principle experiments on THz source for the European XFEL

Mikhail Krasilnikov for the THz@PITZ team, Internal THz workshop, EuXFEL 05.03.2024

HELMHOLTZ

Motivation for THz R&D at PITZ

Accelerator based THz source for pump-probe experiments at the European XFEL

THz source requirements (P. Zalden, et al., "Terahertz Science at European XFEL", XFEL.EU TN-2018-001-01.0):

- **Tunable** $\rightarrow f = 0.1 \dots 20 \ THz \ (\lambda_{rad} = 3mm \dots 15 \mu m)$
- Various temporal and *spectral* patterns, polarization ideally **narrow-band** $\rightarrow \Delta W/_W \sim 0.1 \dots 0.01$
- Time jitter \rightarrow from CEP (few fs) stable for field driven to "intensity" driven dynamics (~longest pulse duration) $\rightarrow \sigma_t \sim 0.1/f$
- High pulse energy $W > 10\mu J$ (μJ hundreds of μJ mJ, depending on f)
- **Repetition rate** to follow European XFEL \rightarrow (600 μ s ... 900 μ s) × (0.1 ... 4.5MHz) × 10Hz = 27000 ... 40500 pulses/s

Photo Injector Test facility at DESY in Zeuthen (PITZ)

THz SASE FEL source for pump-probe experiments at European XFEL

PITZ-like accelerator can enable high-power, tunable, synchronized THz radiation

Proof-of-Principle Experiments on THz SASE FEL at PITZ: Technical Realization

Proof-of-principle experiment on THz SASE FEL at PITZ

Using LCLS-I undulators (available on loan from SLAC)

Some Properties of the LCLS-I undulator

Properties	Details
Туре	planar hybrid (NdFeB)
K-value	3.585 (3.49)
Support diameter / length	30 cm / 3.4 m
Vacuum chamber size	11 mm x 5 mm
Period length	30 mm
Periods / a module	113 periods

λ_{rad} ~100 μ m \rightarrow <Pz>~17MeV/c

Main challenges:

- Space charge effect
- Strong undulator (vertical) focusing
 + horizontal gradient
- FEL parameter is not very small
- Bunching factor impact?
- Waveguide effect
- Wakefields: geometric and conductive wall effects

Proposal "Conceptual design of a THz source for pump-probe experiments at the European XFEL based on a PITZ-like photo injector" has been supported by the E-XFEL Management Board \rightarrow dedicated R&D activities at PITZ \rightarrow Proof-ofprinciple experiments (2019-2023)

Position	R&D	
Personnel	1PD+1PhD	+ ~x2 more from
Invest	200k	PITZ (DESY)
Operation	3weeks/year	own resources

PITZ upgrade for the proof-of-principle experiment on THz source

Design and technical Implementation

THZ Diagnostics at PITZ

3 stations in the second tunnel

TD1 TD2 TD3 Image: Constraint of the state of the s

TD1:

- Pulse energy using pyroelectric detector
- THz spectrum using a Michelson interferometer
- Quartz vacuum window
- ~0.2 m transport in vacuum,
 ~0.5 m transport in air
- Focusing by using 90° offaxis ellipsoidal and parabolic mirrors
- 1 motorized linear stage

- Pulse energy using pyroelectric detector
- Diamond vacuum window
 ~0.8 m transport in
- vacuum, ~0.5 m transport in air • Focusing by using 90°
- Focusing by using s off-axis ellipsoidal mirror

TD3:

- Pulse energy using pyroelectric detectors
- Transverse profile using a THz camera
- Polarization using a THz polarizer
- THz spectrum using a Michelson interferometer
- · Diamond vacuum window
- ~1.8 m transport in vacuum, 1-1.5 m transport in air
- Focusing by using 90° off-axis ellipsoidal and parabolic mirrors
- 3 pneumatic actuators, 3 motorized mirror adjusters, 2 motorized linear stages

Enclosed system

THz SASE FEL at PITZ: **Electron Beam Transport** and **FEL Lasing Tuning**

log(radiation power)

THz SASE FEL at PITZ

DESY. | THz at PITZ | Mikhail Krasilnikov, 05.03.2024

SASE Gain Curves at High3.Scr3 with BPF

In-vacuum mirror without hole + 3THz Band-pass filter

Using Gaussian photocathode laser pulses 7-8ps FWHM

Optimization progress <pulse energy> (fluctuations) High3.Scr2 High3.Scr3 VS **Bunch** 1st lasing, Tuning, charge no BPF **BPF** 0.36 uJ (32%) 6.12uJ (13%) 1nC 2nC 0.55uJ (52%) 21.44uJ (10%)

Reference case: 2nC, 3THz

Cross-check with linear theory of FEL amplifier with diffraction effects

DESY, | THz at PITZ | Mikhail Krasilnikov, 05.03.2024

First Seeding Experiments

- Gain Curves at HIGH3.Scr3 (THz mirror w/o hole) with BPF (3THz)
- THz FEL Seeding experiments

 (2nC e-beam with modulated photocathode laser pulse):
 <W>→ 33µJ vs 21µJ from SASE

Pz-distributions of e-beam (2nC) after gun (LEDA)

Simulations Challenges

Shot (intrinsic) noise accurate modeling

• The bunching factor

$$bf(\lambda,t) = \frac{1}{N_t} \sum_{n \in N_t}^{c|t_n - t| \le \lambda/2} e^{2\pi i \frac{ct_n}{\lambda}}.$$

• For random distribution, the square of bunching factor (or the shot noise) follows exponential distribution and we have $\langle |bf(\omega)|^2 \rangle = \frac{1}{N_e}$, where N_e is the number of electrons within one radiation wavelength,

e.g., $I_{peak} = 2 \text{ kA}$, $\lambda_s = 0.1 \text{ nm}$ for XFEL and $I_{peak} = 200 \text{ A}$, $\lambda_s = 100 \text{ }\mu\text{m}$ for THz : Ne(THz)/Ne(XFEL) = **10**⁵ !

- But, due to the longer wavelength of THz, the radiations actually see a density slope within one wavelength
- There are other possible reasons for an increased noise level at THz wavelengths (emission from cathodes, Boersch effect, etc.)

THz SASE FEL at PITZ: Further Optimization

High gain THz SASE FEL (~3THz) characterization

First Direct THz FEL Spectrum Measurements

28.02.2024N, FTIR spectrometer measurements (with E. Zapolnova, FS-FLASH-B)

• 2nC, central wavelength around 2.57 THz (110 μm)

Pan, R., Zapolnova, E., Golz, T., Krmpot, A. J., Rabasovic, M. D., Petrovic, J., Asgekar, V., Faatz, B., Tavella, F., Perucchi, A., Kovalev, S., Green, B., Geloni, G., Tanikawa, T., Yurkov, M., Schneidmiller, E., Gensch, M. & Stojanovic, N. (2019). Photon diagnostics at the FLASH THz beamline. J. Synchrotron Rad. 26, 700â€07.

Proof-of-principle Experiment on THz Source at PITZ

Where we are now and the way to go

parameter	Min. requirements [1]	PITZ (exp)	
Bandwidth	10.05	~0.02	
f [THz]	0.1 <mark>320</mark> 30	<mark>35</mark>	
Pulse energy	<u>3mJ@0.1THz;</u> <u>30µJ@1THz;</u> 10µJ@10THz	3065µJ@3THz <	Gaussian photocathod
CEP	yes	To be studied	bunch charg
Rep.Rate (burst)	0.1MHz4.5MHz	1MHz4.5MHz	
Synchronization	<0.1/f	To be investigated	
Polarization	optional	yes	

Scientific requirements:

[1] P. Zalden, et al., "Terahertz Science at European XFEL",

XFEL.EU TN-2018-001-01.0

"..3 to 20 THz is the most difficult to cover by existing sources; at the same time, many vibrational resonances and relaxations in condensed matter occur at these frequencies."

Conceptual Design of THz source based on PITZ-like accelerator Zero-order CDR

Conclusions

THz R&D at PITZ

 PITZ-like accelerator → high-power tunable accelerator-based THz source for pump-probe experiments at the European XFEL → identical pulse train structure + high (~2-4nC) bunch charge

Proof-of-principle experiments at PITZ (supported by EuXFEL)

 Key findings / experiences gained / lessons learned : 17m new THz beamline at PITZ with LCLS-/ undulator including BC SC dominated beam transport and matching procedures Detailed FEL simulations → impact of the bunching factor Beam dynamics and FEL simulations for THz@PITZ and for the proposed ideal machine 	Ex • •	perimentally demonstrated: High-gain THz FEL lasing at ~3THz 2nC <i>Gaussian</i> beams, more than 10 1 st seeding with modulated PC laser Narrow bandwidth (1 st FTIR measur THz pulse energy fluctuations ~6-10%	: with <mark>)0µJ</mark> · puls reme			
Still to demonstrate		Current limitations, risks				
More tunability – 5THz, 1THz(?)		Beam time (stable gun) supporting				
Further seeding studies (e.g., DLW)		simulations (ongoing), finalization				
Use BC to explore/extend the parameter space		of special experimental procedures				
Spectral studies (FTIR and Michelson interferometer)	Spectral studies (FTIR and Michelson interferometer)					
Transverse distribution with Pyrocam		the THz diagnostics stations				
Flattop PC laser pulses + 4nC to increase the THz pulse er	ergy	Full performance of the NEPAL-P				

THz@PITZ: next steps

Topics for THz R&D 2024+, "Reduced list"

WP1: Exploration of THz parameter space at PITZ

- SASE (+bf studies)
- Seeded FEL (using modulated e-beams)
 "Tapering studies with LCLS-I undulator?"

WP2: E-beam generation for THz seeding

- "PC laser pulse modulation with new methods + e-beam generation"
- Two-beam scheme
- DLW?
- "Other methods: external source, etc."
- THz radiation w/ DLW?

WP3: THz diagnostics

- EOS
- Spectrometry
- Martin-Puplett Interferometer (MPI)
- Other advanced (fast) tools

?WP4: TDR on THz source for EuXFE

- Project management
- "Ideal" THz facility layout refinement
- "Ideal" THz undulator design
- "Ideal" BC for THz machine

1			Investments				Investments						Manpower						6	Risks							
	#dM	Topic	Our view on preferred priori (1-3)	Challenges	Expected delivery	Start date	Duration years	Componenets	Rough estimate in kEuro	weeks/year	weeks total	costs, kEuro	PD/year	PD total	PhD/year	PhD total	Techlyear	Tech total	All FTEs/year	All FTE*year total	PD (Hamburg) total	Ing. (Hamburg) total	Total costs on DESY site (rough estimat	level	details	Possible collaborations	Remarks
	1	Exploration of THz parameter space at PITZ				2024	3		150	4	12	480	0.5	1.5	1	3	0.5	1.5	2	6			1018.5				
/ >"		SASE	1	tunability check, presice trajectory model understanding waveguide effect	diagnostics, realistic			Beam arrival cavity (BAM), e-beam diagnostics improvements?	100	1.5	4.5	180	0.25	0.75	0.5	1.5	0.25	0.75	1	3			507.75	low / medium	accelerator componenets failures	MPY	
-		Seeded FEL (using modulated e-beams)	1	control of the input signal properties, BC setup	procedure, BC tuning			Update of CTR/CDR station for seeding tuning	50	2.5	7.5	300	0.25	0.75	0.5	1.5	0.25	0.75	1	3			510.75	low / medium	accelerator componenets failures	MPY	
		Tapering studies with LCLS-I- undualtor?	2-3	independent and safe undulator- motors -control	system in operation			SPS or similar?																medium/ high	mechanical constrains, movement- range -is not sufficient	SLAC?	
	2	E-beam generation for THz seeding				2024	3		80	5	15	600	0.5	1.5	1	3	0.5	1.5	2	6			1021.5				
		with new methods + e-beam	1	Laser system modification / extension, presice and reliable control of modulation	system in operation			Laser components (optics, gratings, etc	70	4	12	480	0.25	0.75	0.5	1.5	0.25	0.75	1	3			515.25	medium / high	stablity, routine opreration?	FS-LA	
		Two-beam scheme	1-2	Laser beamline update, synchronization	system in operation			Laser beam line components	10	1	3	120	0.25	0.75	0.5	1.5	0.25	0.75		3			506.25	low / medium			
		Other methods: DLW, external source, etc.	2-3	space charge, emittance dilution, apperture issues	system in operation			New DLW (tunable?)																medium/ high	see challenges	CFEL-	
		THz radiation w/ DLW	2-3	Modification of High3 stations	proof of principle			DLW w/ Vlasov antenna at- High3.Scr1,3?										2						medium / high	see challenges	CFEL- (F. Lomony)?	
																0	- A		<u> </u>				<u></u>				
	3	THz diagnostics		multicycle pulses, arival time jitter, towards CEP, THz transport		2024	3		395	5.5	10.5	420	1	3				3	3.25	9			1625				
		EOS	1	+single shot	EOS design for THz SASE/seeded FEL at PITZ			diag.laser or diode pump for Pharos (50k+150k?), pectrometer/. spectrum analyzer - camera (2 channel, high resolution) 100k?, fibers, BL components+controls 50k?	350	3	9	360				2.25	1	3	2.75	8.25			1467.5	high	fluctuations of the THz signals, long THz pulses, sensitivity of the spectrometer, diagnostic laser transport	Univ. de Lille (S. Bielawski) FLASH (B. Steffen), CFEL (N. Matlis?)	Spectrometer/camera could be on load from DESY HH?
		Spectrometry	1-2	+sigle shot, narrow band, resolution, 3rd and 5th harmonics	Spectrometry setup is in operation at PITZ			Lamellar Grating Spectrometer Echelon mirrors, band-pass filtes	40	2		0		0	0.25	0.75	0.25	0	0.5	0.75			92.5	high	no experience at PITZ, resolution issue due fluctuations (pointing jitter)?	FLASH (E. Zapolnova)	
		Martin-Puplett Interferometer (I	4-2	alignment	MPL commissioned and in operation			new design, 2 pyre		í														ł ow	alignment issues?	HZDR (TELBE)?	
		Other advanced (fast) tools	2-3	fast detector, calibration,- integration- into PITZ control system, DAQ	THz pulse train measurements			Fast DESY pyro?, 1MHz resolved																medium	cross-talk, electronic noise?	FLASH (B. Stoffon)?	
		Transverse distribution	2-3	proper THz camera setup, new 2D detectors	Transverse modes characterization, coherency studies			Consumables (filter, polarizers, etc) New 2D detector (Hamamtsu) XXk?	5	0.5	1.5	60											65	medium	stability, THz camera damage?		
FI																											
	SUM	I (WP1-3)			•		1		625			1500	2	6	3	9	2.25	6	7.25	21	0	0	3665				
	4	TDR on THz source for EuXFEL		to be coordinated with EuXFEL!	TDR on THz source	2025	2						2	4			1	2	3	6	1	2	600	medium			Who will lead / coordinate the project at DESY (HH or Zeuthen)?
		Project management	1	Overall coordination (HH-Z), costs estimations	TDR								1	2			1	2	2	4	0.75	1.5	400		coordination Hamburg-Zeuthen-EuXFEL		Also manpower from EuXFEL? (1FTE for on-site planing?)
Ē		"Ideal" THz faclity layout refinement	1	realistic s2e simulations	beamline design, budget estimate								0.5	1					0.5	1			100		realistuic simulations, space constraints		Accelerator layout refinement for a dedicated (multiple) THz source, oscillator (optical cavity) at 4.5MHz?
Γ		*Ideal" THz undulator design	1	combine several options, variable tapering, strength, period?	THz undulator design								0.25	0.5					0.25	0.5	0.25	0.5	50		prototype for proof-of-principle	FS-US DESY HH (M. Tischer, P. Vagin)	? Prototype fabrication (not included)
		"Ideal" BC for THz machine	1-2	multipurpose, dispersion management, space charge, CSR	optimized BC design								0.25	0.5					0.25	0.5			50		prototype for proof-of-principle		Really multipurpose for ultimate performance
8	SUM (WP1-4)							625			1500	4	10	3	9	3.25	8	10.3	27	1	2	4265					

THz@PITZ Team and Collaboration

Proof-of-principle experiment on high power THz source

Physicists:

- Z. Aboulbanine*
- G. Adhikari*
- N. Aftab
- P. Boonpornprasert*
- G. Georgiev*
- J. Good
- M. Gross
- A. Hoffmann
- E. Kongmon*
- M. Krasilnikov
- X.-K. Li
- A. Lueangaramwong*
- R. Niemczyk*
- A. Oppelt
- H. Qian*
- C. Richard
- F. Stephan
- G. Vashchenko
- T. Weilbach*
- X. Zhang
- * \rightarrow left PITZ for other lab

DESY Zeuthen

Engineers and Technicians:

- R. General
- L. Heuchling
- M. Homann
- L. Jachmann,
- D. Kalantaryan
- W. Köhler
- G. Koss
- S. Maschmann
- D. Melkumyan
- F. Müller
- R. Netzel
- B. Petrosyan
- S. Philipp
- M. Pohl
- C. Rüger
- A. Sandmann-Lemm
- M. Schade
- E. Schmal
- J. Schultze
- S. Weisse

SLAC

- A. Brachmann
- N. Holtkamp
- H.-D. Nuhn

DESY Hamburg

- E. Schneidmiller
- M. Yurkov
- B. Krause
- M. Tischer
- P. Vagin

Uni Hamburg

- J. Rossbach
- W. Hillert

Thank you!