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Kinetic approach to plasma

» particle distribution function for N particles:
fN(trFl)Jr_Z)r"'rrl\l,rpllrpir""m) (]])

» for noninteracting particles (collisionless plasma)
fN(t,T_f,T_z), ...,T]\;, p1>i p2>i 'p—N)) — Iivzlf(t;ﬁ;ﬁ) (] 2)

» probability that the particle is within the volume
dr dp around the point 7,p of the phase space at
the ¢ time moment:

f(t,7,p)drdp (1.3)

» hormalization =2 NoP:

Jf@,7,p)drdp =N (1.4.)




Kinetic equation for f(¢t,7;, p;)

ar - dp ~ ] = D
—=7, L=F=¢e(E+[6xB]) (1.5
r(t) =75, P(to) =P (1.6)

dry - dpg = dr-dp, f(to,70,P0) = f(&,7(®),p())  (1.7)

» Assuming the invariance of the particle number (no ionization, no
recombination, no collisions) a full particle number in the phase space
volume is constant:

f@&7(0), (1) dr dp = f(to, 7o, Po) dTo dpg = const (1.8)

» According to the Liouville’s theorem the phase space volume is preserved:
drg-dpy =1- d#-dp (1.9)

=>the particle distribution function along the phase trajectory
IS constant:

f(t,7(t),p(t)) = const (1.10)




Kinetic equation for f(¢t,7;, p;)

df (tF(.B@) _ f | Of dF(t) | 9f dB() _
dt At 97 dt t g dt 0 a.11)
» Combining with (1.5)

L=, L=F=e(E+[pxB]) (1.5)
» Vlasov equation:

af ->6f = —> D af

E'FU&‘FB(E‘F[UXB])G—I;:O (1.12)

» +Maxwell equations for the electromagnetic fields:

= p = =1 0B =1_ . -, 10E
VE=_, VB=0, VxE]==—, [VxB]=uyj+5--, (1.13)
> charge and current densities are calculated as
p(t,) =e[ft,7,P)dp, J=e[vVf(t,7,p)dp (1.14)
particle density n(t,7):

J &7, p)dp = n(t, ), (1.15)

[n(t,7)d7 =N (1.16)

R NB: only variables t,7,p in (1.12) are independent v = CJ%W (1.17)

¢ = —— = 299792458 (1.12)+(1.13)+(1.14)=
As lcomplete

g = 885410712

Sm lrigorous
= 471077 — Ifull physics




Vlasov Equation: solution?

af >0f = - =4 af_
—+ v +e(E+[v><B])a—ﬁ—O

a7

» Two main approaches:
> Initial value = initial space distribution - evolution - time ¢
as independent variable.
> Boundary value = boundary conditions = injection (emission)
- e.g. zas independent variable.

» Both problems can be formulated as a mathematical Cauchy problem
for the solution of a partial differential equation (PDE) that satisfies
corresponding conditions which are given on a hypersurface in the

domain.




M: General Cauchy problem for linear PDE

» The Cauchy problem for the first order linear homogeneous PDE:

of of f of _
W, — . + W, — ™ + o Wy + W1 o = 0, (2.1)

where W; = W;(uq, Uy, ..., Up, Un+1) are given functions of n+7 independent variables (uq,uy, ..., Uy, Upy1)-

» additional condition for the fixed selected variable x:

F(0, Uy, oo, Uy, Uppq) = R(Uy, Us, on, Uy, Uy gq) (2.2)

» Let us:

> fix the first independent variable u; = x as a selected (“evolution”) variable x.
o denoteY =W,
introduce new vectors (with dimension of n) as

C_i = {u'Zr u3; ---;unr un+1}; 5 — {WZI WBJ ey Wnl Wn+1} = 5('xl é) (23)

» The equation (2.1) can be rewritten as

of 9f _
Y-+ +G- aa—O (2.4)

The condition (2.2) takes a form:

f(0,9) = R(q) (2.5)




M: General Cauchy problem solution

vy2L+G-2-o (2.4)
dx aq

Three steps:

(I) Form the characteristic equations:

dx _dq _da: _da: _  _ 4
Y G G G, Gy’ (2.6)
This system can be rewritten in vector form as system of ordinary differential equations (ODE):
dg G
s 2.7)
dx

(II) Obtain the first n integrals of the system (2.7):
Y(x,q) = C, (2.8)

where the vector C is an arbitrary constant vector. Then the equation (2.8) has to be resolved w.r.t.
the unknown vector g:

i =Q(x,0), (2.9)

(ll) The first integral (2.8) is to substituted in an arbitrary differentiable function ®(C)
fx,§) = o(C) = & (¥(x.9)) (2.10)
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M: Cauchy problem solution (practical scheme)

» The solution of the Cauchy problem can be obtained using the
same scheme but applying additional conditions:

q(x = 0) = o, (2.11)

» The solution of the characteristic system can be rewritten using
(2.11), where the arbitrary constant vector is replaced with g,:

d = Q(x, 4o) 2.12)

» Expressing the initial vector g, from (2.12) the first integral of
the characteristic system can be obtained:

do = Qo(x, ) (2.13)

» Substitution of the (2.13) in in an arbitrary differentiable function
® results in in a general solution:

fx,d) = ®(Qolx, D)) (2.14)

[



M: Cauchy problem solution (practical)

» For the final solution of the Cauchy problem the arbitrary function ® has to
be found. Using the additional condition one obtains:

£(0,3) = ©(Qo(0,3) = R(§) (2.15)

» The function G, = Q,(x,§) is constant along the vector line - characteristics -
by definition. That is why the solution of the solution of the Cauchy problem
is also conserved along the characteristics. This means that arbitrary
function ® can be obtained as:

(g) = R(q) (2.16)

» Finally the solution of the Cauchy problem is given by equation:

flx,d) = R(Qo(x, ) (2.17)

d=Qx,do) D do = Qo(x, )DPR(Ge)D f(x, 7

[



1D Vlasov equation

» In the 1D case the distribution function f(¢t,7,p) does
not depend on transverse coordinated x and .

» The 1D plasma is considered in the presence of the
longitudinal Lorenz force F = {0,0, F,}.

» This could be, for example,
> the case of electron beam start in the cathode vicinity of the rf gun:
E, = eE, sin(wt + ¢¢).
the case of electron beam acceleration in the plasma wake field.
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1D Vlasov equation: initial value problem

» The 1D Vlasov equation with initial condition are written as

of aof of _
E+UZ£+FZB_IDZ_O (3])
f(t = O,Z,pz) = fO(Z'pz) (32)

» The equations for the characteristics are straightforward:
Lo i (3.3)

1 v, F,
» or in the ODE form (tis fixed coordinate)

az _ vz _ g (3.4)

dt %2 dt z

» Initial conditions:
z(t = 0) = z, pz (t=0) =py (3.5)




1D initial value problem: case E, = F, = const

» Solution of characteristics:

Pz = Pzo + Fot» Z = Zy _|_F£0[\/m2C2 + (pZO + Fot)z - \/mzcz + onz] (36)

» Following the above mentioned scheme we have to express p,, and z, from this
solution:

Pzo =pz_F0t; Zo =Z+F£0[\/m2C2+(pZ—FOt)2—\/m2C2+pZZ] (37)

» Substituting (3.7) into (3.2) one obtains the solution of the initial value problem
(3.1)-(3.2) for the constant field:

f(t,2,0,) = fo(20,D20) = fo (Z + Fio [\/mzcz + (p, — Fot)? —ym?c? + Pzz]:Pz - Fot) (3.8)
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1D initial value problem: case E, = F, = const

» As an example a start of the bunched cold electron beam can be
considered. In this case the initial particle distribution function can be
factorized and represented as:

fo(z,p;) = G(2) - 6(ps) (3.9)

here G(z) is a longitudinal bunch distribution (e.g. Gaussian or a flattop
profile), §(p,) is a Dirac delta function which assumes a start of the cold beam
(zero momentum with zero momentum spread). Integration in p, results in
the following solution - charge density distribution function:

p(t,z) =G (Z + Fio lmc — \/mzcz + (Fot)ZD (3.10)

» The nonrelativistic approximation of (3.10) can be easily obtained:
pur(t,2) = G (2 =525 (3.11)

2m
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1D initial value problem: case E,~sin(wt)

» The external force can be represented as
E,(t) = eEysin(wt + ¢p), (3.12)

where E, and @, are amplitude and the initial phase of the accelerating field. For simplicity let us
consider the nonrelativistic case.

» The solution of the characteristic is given by

P, = Py + amw - [cos @, — cos(wt +¢g)] (3.13a)

Z =z, +%t + a - [wt cos @y — sin(wt +¢,) + sin @] (3.13b)
» The expressions for p,, and z, take a form:

P =P, + amw - [cos(wt +¢@,) — cos ;] (3.14a)

Zo =27 — %t + a - [sin(wt +¢,) — sin @, — wt cos(wt +¢,)] (3.14b)

eE,

Here o = is normalized amplitude of the field.

maw?
» The solution of the initial value problem in this case is

z— %t + a - [sin(wt +¢o) — sin gy — wt cos(wt +(p0)],) 19

f(t,Z,pZ) = f0<
p,+amw - [cos(wt +¢,) — cos @]
» Assuming the initial distribution like (3.9) yields the particle distribution function:
p(t,z) = G(z+ a-[sin(wt +¢y) — sin @, — wt cos @,]) (3.16)
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1D Initial problem

Parameters:
» Ey=60~", = 2m-1.3GHz, which
corresponds to a = 0.158m.

» Gaussian initial distribution with 2 mm rms
bunch length

» 3 initial (launch) phases ¢, = 10;40; 70deg

«(upper row) - static nonrelativistic solution
(3.11):

pnr(th) =G <Z -

eE, sin @, t2
2m

«(middle row) - static relativistic solution
(3.10) (Fy, » eE,sin @y):

p(t z) = G<Z + i[mc — {m2c? + (Fot)2]>

Fo

«(bottom row) - time dependent
nonrelativistic solution (3.16):
p(t,z) =G(z+ ax

X [sin(wt +¢,) — sin @y, — wt cos @,])

: humerical example

¢g=10deg do=40deg do=70deg
a0 a0
45 45 46
a0 40 a0
3 32 3
o0 0 o0
[} [} @
T2 T2 T25
7 7 o2
15 15 15
1 1 10
i i 5
o o 0
o 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50
z (mm) z (mm) z (mm)
¢g=10deg do=70deg
a0 a0
45 45
40 40
3 3
o o
i) @
T2 T25
7 2
g e
15 15
1 10
i 5
o 0
10 20 30 40 50 10 20 30 40 50
z (mm) z (mm) z (mm)
¢g=10deg do=70deg
50 50
45 45
40 40
34 35
o fovil
@ L]
T2a T25
L RS2
@ e
15 15
1 10
a 5
o 0
o 1 20 30 40 a0 0 10 20 30 40 a0
z (mm) z (mm)
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1D Vlasov equation: Boundary value problem

» the problem of the plasma (beam) injection through the z=0

plane.
of of L O _
at+UZaZ+FZapZ_O (3.17)
f(t,Z — O'pz) — fO(trpZ) (3] 8)

» how the z coordinate serves as a fixed (‘evolution”) variable.

» characteristic system (3.3) remains but it should be resolved
now in a different way:

a_1 dz_ 5 (3.19)

dz v,

dz v,

» this system has to be completed by boundary conditions
t(z =0) = to, Pz (z=0) =pzo (3.20)

16



1D boundary value problem: case E, = F, = const

» For the simplicity let us consider a nonrelativistic case p,= mv, with a constant
Lorenz force F, = F, = const. Under these assumptions the solution of the characteristic
system (3.19)-(3.20) can be written as

D, =\/p§0+2mFOZ, t =t +Fl \/p§0+2mFoz—p20] (3.21)
0
» Following the same scheme as above:
pro =P —2mFoz,  to =t +-[\pE = 2mFoz — p,] (3.21)

» The solution of the boundary value problem in this case takes a form:

f6,2,p) = foltopao) = fo (t + 7 [VPE = 2mFoz = p,|,VP? = 2mFoz) (3.22)

» Assuming that cold plasma (beam) injected through the z=0 plane has temporal
profile G(t):

f(t,Z = Otpz) = fO(t:pz) = G(t) ) 5(pz) (3.23)
» and applying an integration in p, one obtains for the particle density evolution:

p@J)=G<t— ”“) (3.24)

Fy
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1D boundary value problem: case F = F, = const

»  For the nonrelativistic (but still static) case:

p(t,z) =G ( t —
Parameters:
» By =60~", w = 2m-1.3GHz, which bo=10deg po=40deg
corresponds to a = 0.158m. 45
» Gaussian temporal profile with 6.6 ps rms ;
duration o
» 3 initial (launch) phases ¢, = 10;40; 70deg -

o 1;3 Z;J S;J AI[I 50
z (mm)

»  For the relativistic (but still static) case (= HW):

p(t,z) =G
¢g=10deg
a0 50
45 45 45
a0 40 a0
3 32 3
o0 0 o0
[}
T2 T2 T25
7
%o o e
15 15 15
1 1 10
i i 5
o . . . . o . . . . 0 . . . .
o 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50
z (mm) z (mm) z (mm)
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Summary

» Collisionless plasma = kinetic aproach
» Kinetic Vlasov equation
» Cauchy problem for PDE

» Cauchy problem for Vlasov equation:
> Initial value problem
- Boundary value problem

BUT! This method is rather restricted:
strong nonlinearity = fields (external + self)
= integration over initial (boundary) conditions

f(t: Z, pz) = j dtOdeO fO (tO' on)5[t - T(tr Z, Pz, tO' sz)]5[pz — Pz(t' Z, Pz, tO' pZO)]
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