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 particle distribution function for N particles: 

 𝑓𝑁 𝑡, 𝑟1, 𝑟2, … , 𝑟𝑁, 𝑝1, 𝑝2, … , 𝑝𝑁    (1.1) 
 

 for noninteracting particles (collisionless plasma) 

 𝑓𝑁 𝑡, 𝑟1, 𝑟2, … , 𝑟𝑁, 𝑝1, 𝑝2, … , 𝑝𝑁 =  𝑓 𝑡, 𝑟𝑖 , 𝑝𝑖
𝑁
𝑖=1  (1.2) 

 

 probability that the particle is within the volume 
𝑑𝑟  𝑑𝑝  around the point 𝑟  , 𝑝  of the phase space at 
the t  time moment: 

𝑓 𝑡, 𝑟 , 𝑝  𝑑𝑟  𝑑𝑝    (1.3) 
 

 normalization  NoP: 

 𝑓 𝑡, 𝑟 , 𝑝  𝑑𝑟  𝑑𝑝 = 𝑁 (1.4.) 
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the particle distribution function along the phase trajectory 
is constant: 

𝑓 𝑡, 𝑟 𝑡 , 𝑝 (𝑡) = 𝑐𝑜𝑛𝑠𝑡  (1.10) 

𝑡0 

𝑟0 , 𝑝0 

𝑡 

𝑟  , 𝑝  

𝑑𝑟0 ∙ 𝑑𝑝0 → 𝑑𝑟 ∙ 𝑑𝑝 ,   𝑓 𝑡0, 𝑟0, 𝑝0 →  𝑓 𝑡, 𝑟 𝑡 , 𝑝 (𝑡)   (1.7) 

𝑑𝑟 

𝑑𝑡
= 𝑣  ,   

𝑑𝑝 

𝑑𝑡
= 𝐹 = 𝑒 𝐸 + 𝑣 × 𝐵   (1.5) 

𝑟 𝑡0 = 𝑟0 ,      𝑝 𝑡0 = 𝑝0   (1.6) 

 Assuming the invariance of the particle number (no ionization, no 
recombination, no collisions) a full particle number in the phase space 
volume is constant: 

 𝑓 𝑡, 𝑟 𝑡 , 𝑝 (𝑡)  𝑑𝑟  𝑑𝑝 = 𝑓 𝑡0, 𝑟0, 𝑝0  𝑑𝑟0 𝑑𝑝0 = 𝑐𝑜𝑛𝑠𝑡   (1.8) 

 

 According to the Liouville’s theorem the phase space volume is preserved: 

𝑑𝑟0 ∙ 𝑑𝑝0   = 1 ∙   𝑑𝑟 ∙ 𝑑𝑝      (1.9) 
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𝑑𝑓 𝑡,𝑟 𝑡 ,𝑝 (𝑡)

𝑑𝑡
=
𝜕𝑓

𝜕𝑡
+
𝜕𝑓

𝜕𝑟 

𝑑𝑟 𝑡

𝑑𝑡
+
𝜕𝑓

𝜕𝑝 

𝑑𝑝 𝑡

𝑑𝑡
= 0              (1.11) 

 Combining with (1.5) 

 
𝑑𝑟 

𝑑𝑡
= 𝑣  ,   

𝑑𝑝 

𝑑𝑡
= 𝐹 = 𝑒 𝐸 + 𝑣 × 𝐵    (1.5) 

 Vlasov equation: 
𝜕𝑓

𝜕𝑡
+ 𝑣 

𝜕𝑓

𝜕𝑟 
+ 𝑒 𝐸 + 𝑣 × 𝐵

𝜕𝑓

𝜕𝑝 
= 0   (1.12) 

 

 +Maxwell equations for the electromagnetic fields: 

𝛻𝐸 =
𝜌

𝜀0
,     𝛻𝐵 = 0,    𝛻 × 𝐸 = −

𝜕𝐵

𝜕𝑡
 ,       𝛻 × 𝐵 = 𝜇0𝑗 +

1

𝑐2
𝜕𝐸 

𝜕𝑡
  , (1.13) 

◦ charge and current densities are calculated as  

𝜌 𝑡, 𝑟 = 𝑒  𝑓 𝑡, 𝑟 , 𝑝 𝑑𝑝 ,       𝑗 = 𝑒  𝑣 𝑓 𝑡, 𝑟 , 𝑝 𝑑𝑝   (1.14) 
◦ particle density 𝑛 𝑡, 𝑟 : 

 𝑓 𝑡, 𝑟 , 𝑝 𝑑𝑝 = 𝑛 𝑡, 𝑟 ,     (1.15) 

 𝑛 𝑡, 𝑟 𝑑𝑟 = 𝑁      (1.16) 

 

 𝑐 =
1

𝜀0𝜇0
= 299792458

𝑚

𝑠
 

휀0 = 8.854 ∙ 10
−12

𝐴 𝑠

𝑉 𝑚
 

𝜇0 = 4𝜋 ∙ 10
−7
𝑉 𝑠

𝐴 𝑚
 

NB: only variables 𝑡, 𝑟 , 𝑝  in (1.12) are independent  𝑣 = 𝑐
𝑝 

𝑚2𝑐2+𝑝2
    (1.17) 

(1.12)+(1.13)+(1.14)= 
!complete 
!rigorous 
!full physics 
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 Two main approaches: 
◦ Initial value = initial space distribution  evolution  time t 

as independent variable. 

◦ Boundary value = boundary conditions  injection (emission) 
 e.g. z as independent variable. 

 
 Both problems can be formulated as a mathematical Cauchy problem 

for the solution of a partial differential equation (PDE) that satisfies 
corresponding conditions which are given on a hypersurface in the 
domain. 
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𝜕𝑓

𝜕𝑡
+ 𝑣 

𝜕𝑓

𝜕𝑟 
+ 𝑒 𝐸 + 𝑣 × 𝐵

𝜕𝑓

𝜕𝑝 
= 0   



 The Cauchy problem for the first order linear homogeneous PDE: 

𝑊1
𝜕𝑓

𝜕𝑢1
+𝑊2

𝜕𝑓

𝜕𝑢2
+⋯𝑊𝑛

𝜕𝑓

𝜕𝑢𝑛
+𝑊𝑛+1

𝜕𝑓

𝜕𝑢𝑛+1
= 0,  (2.1) 

 

where 𝑊𝑖 = 𝑊𝑖 𝑢1, 𝑢2, … , 𝑢𝑛, 𝑢𝑛+1  are given functions of n+1 independent variables  𝑢1, 𝑢2, … , 𝑢𝑛 , 𝑢𝑛+1 .  

 additional condition for the fixed selected variable 𝑥: 

𝑓 0, 𝑢2, … , 𝑢𝑛, 𝑢𝑛+1 = 𝑅 𝑢2, 𝑢3, … , 𝑢𝑛, 𝑢𝑛+1     (2.2) 

 

 Let us: 
◦ fix the first independent variable 𝑢1 = 𝑥 as a selected (“evolution”) variable 𝑥. 

◦ denote 𝑌 = 𝑊1  

◦ introduce new vectors (with dimension of n) as  

𝑞 = 𝑢2, 𝑢3, … , 𝑢𝑛, 𝑢𝑛+1 ,    𝐺 = 𝑊2, 𝑊3, … ,𝑊𝑛,𝑊𝑛+1 = 𝐺 𝑥, 𝑞   (2.3) 

 

 The equation (2.1) can be rewritten as  

𝒀
𝝏𝒇

𝝏𝒙
+ 𝑮 ∙

𝝏𝒇

𝝏𝒒
= 𝟎   (2.4) 

 The condition (2.2) takes a form: 

𝒇 𝟎, 𝒒 = 𝑹 𝒒    (2.5) 
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𝒀
𝝏𝒇

𝝏𝒙
+ 𝑮 ∙

𝝏𝒇

𝝏𝒒
= 𝟎   (2.4) 

Three steps: 
(I) Form the characteristic equations: 

𝑑𝑥

𝑌
=
𝑑𝑞

𝐺 
=
𝑑𝑞1

𝐺1
=
𝑑𝑞2

𝐺2
= ⋯ =

𝑑𝑞𝑛

𝐺𝑛
,   (2.6) 

This system can be rewritten in vector form as system of ordinary differential equations (ODE): 

𝑑𝑞

𝑑𝑥
=
𝐺 

𝑌
     (2.7) 

 

(II) Obtain the first n integrals of the system (2.7): 

Ψ 𝑥, 𝑞 = 𝐶 ,    (2.8) 

where the vector 𝐶  is an arbitrary constant vector. Then the equation (2.8) has to be resolved w.r.t. 
the unknown vector 𝑞 : 

𝑞 = Q 𝑥, 𝐶 ,    (2.9) 

 

(III) The first integral (2.8) is to substituted in an arbitrary differentiable function Φ 𝐶  

𝑓 𝑥, 𝑞 = Φ 𝐶 = Φ Ψ 𝑥, 𝑞    (2.10) 
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 The solution of the Cauchy problem can be obtained using the 
same scheme but applying additional conditions: 

𝑞 (x = 0) = 𝑞 0,   (2.11) 

 

 The solution of the characteristic system can be rewritten using 
(2.11), where the arbitrary constant vector is replaced with 𝑞 0: 

𝑞 = Q 𝑥, 𝑞 0     (2.12) 

 

 Expressing the initial vector 𝑞 0 from (2.12) the first integral of 
the characteristic system can be obtained: 

𝑞 0 = 𝑄0 𝑥, 𝑞     (2.13) 

 

 Substitution of the (2.13) in in an arbitrary differentiable function 
Φ results in in a general solution: 

𝑓 𝑥, 𝑞 = Φ 𝑄0 𝑥, 𝑞    (2.14) 
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 For the final solution of the Cauchy problem the arbitrary function Φ has to 
be found. Using the additional condition one obtains: 

𝑓 0, 𝑞 = Φ 𝑄0 0, 𝑞 = 𝑅 𝑞    (2.15) 

 

 The function 𝑞 0 = 𝑄0 𝑥, 𝑞  is constant along the vector line – characteristics - 
by definition. That is why the solution of the solution of the Cauchy problem 
is also conserved along the characteristics. This means that arbitrary 
function Φ can be obtained as: 

Φ 𝑞 = 𝑅 𝑞     (2.16) 

 

 Finally the solution of the Cauchy problem is given by equation: 

𝑓 𝑥, 𝑞 = 𝑅 𝑄0 𝑥, 𝑞    (2.17) 
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𝑞 = Q 𝑥, 𝑞 0   𝑞 0 = 𝑄0 𝑥, 𝑞 𝑅 𝑞 0  𝑓 𝑥, 𝑞  



 In the 1D case the distribution function 𝑓 𝑡, 𝑟 , 𝑝  does 
not depend on transverse coordinated x and y.  

 

 The 1D plasma is considered in the presence of the 

longitudinal Lorenz force 𝐹 = 0,0, 𝐹𝑧 .  

 

 This could be, for example,  
◦ the case of electron beam start in the cathode vicinity of the rf gun: 
𝐹𝑧 = 𝑒𝐸0 sin 𝜔𝑡 + 𝜑0 .  

◦  the case of electron beam acceleration in the plasma wake field. 
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 The 1D Vlasov equation with initial condition are written as 

𝜕𝑓

𝜕𝑡
+ 𝑣𝑧

𝜕𝑓

𝜕𝑧
+ 𝐹𝑧

𝜕𝑓

𝜕𝑝𝑧
= 0    (3.1) 

𝑓 𝑡 = 0, 𝑧, 𝑝𝑧 = 𝑓0 𝑧, 𝑝𝑧     (3.2) 

 

 

 The equations for the characteristics are straightforward: 
𝑑𝑡

1
=
𝑑𝑧

𝑣𝑧
=
𝑑𝑝𝑧

𝐹𝑧
    (3.3) 

 or in the ODE form (t is fixed coordinate) 
𝑑𝑧

𝑑𝑡
= 𝑣𝑧,    

𝑑𝑝𝑧

𝑑𝑡
= 𝐹𝑧   (3.4) 

 

 

 Initial conditions: 

𝑧(𝑡 = 0) = 𝑧0,         𝑝𝑧 (𝑡 = 0) = 𝑝𝑧0    (3.5) 
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 Solution of characteristics: 

𝑝𝑧 = 𝑝𝑧0 + 𝐹0𝑡,     𝑧 = 𝑧0 +
𝑐

𝐹0
𝑚2𝑐2 + 𝑝𝑧0 + 𝐹0𝑡

2 − 𝑚2𝑐2 + 𝑝𝑧0
2  (3.6) 

 

 

 Following the above mentioned scheme we have to express 𝑝𝑧0 and 𝑧0 from this 
solution: 

𝑝𝑧0 = 𝑝𝑧 − 𝐹0𝑡,     𝑧0 = 𝑧 +
𝑐

𝐹0
𝑚2𝑐2 + 𝑝𝑧 − 𝐹0𝑡

2 − 𝑚2𝑐2 + 𝑝𝑧
2  (3.7) 

 

 

 Substituting (3.7) into (3.2) one obtains the solution of the initial value problem 
(3.1)-(3.2) for the constant field: 

𝑓 𝑡, 𝑧, 𝑝𝑧 = 𝑓0 𝑧0, 𝑝𝑧0 = 𝑓0  𝑧 +
𝑐

𝐹0
𝑚2𝑐2 + 𝑝𝑧 − 𝐹0𝑡

2 − 𝑚2𝑐2 + 𝑝𝑧
2 , 𝑝𝑧 − 𝐹0𝑡  (3.8) 
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  As an example a start of the bunched cold electron beam can be 
considered. In this case the initial particle distribution function can be 
factorized and represented as: 

𝑓0 𝑧, 𝑝𝑧 = 𝐺(𝑧) ∙ 𝛿(𝑝𝑧)    (3.9) 

 

here 𝐺(𝑧)  is a longitudinal bunch distribution (e.g. Gaussian or a flattop 
profile), 𝛿(𝑝𝑧) is a Dirac delta function which assumes a start of the cold beam 
(zero momentum with zero momentum spread). Integration in 𝑝𝑧 results in 
the following solution – charge density distribution function: 

𝜌 𝑡, 𝑧 = 𝐺  𝑧 +
𝑐

𝐹0
𝑚𝑐 − 𝑚2𝑐2 + 𝐹0𝑡

2    (3.10) 

 

 

 The nonrelativistic approximation of (3.10) can be easily obtained: 

𝜌𝑛𝑟 𝑡, 𝑧 = 𝐺  𝑧 −
𝐹0𝑡

2

2𝑚
     (3.11) 
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  The external force can be represented as 

𝐹𝑧 𝑡 = 𝑒𝐸0sin(𝜔𝑡 + 𝜑0),      (3.12) 

where 𝐸0 and 𝜑0are amplitude and the initial phase of the accelerating field. For simplicity let us 
consider the nonrelativistic case.  

 The solution of the characteristic is given by 

𝑝𝑧 = 𝑝𝑧0 + 𝛼𝑚𝜔 ∙ cos𝜑0 − cos 𝜔𝑡 +𝜑0     (3.13a) 

𝑧 = 𝑧0 +
𝑝𝑧0

𝑚
𝑡 + 𝛼 ∙ 𝜔𝑡 cos𝜑0 − sin 𝜔𝑡 +𝜑0 + sin𝜑0    (3.13b) 

 The expressions for 𝑝𝑧0 and 𝑧0 take a form: 

𝑝𝑧0 = 𝑝𝑧 + 𝛼𝑚𝜔 ∙ cos 𝜔𝑡 +𝜑0 − cos𝜑0     (3.14a) 

𝑧0 = 𝑧 −
𝑝𝑧

𝑚
𝑡 + 𝛼 ∙ sin 𝜔𝑡 +𝜑0 − sin𝜑0 − 𝜔𝑡 cos 𝜔𝑡 +𝜑0    (3.14b) 

Here 𝛼 =
𝑒𝐸0

𝑚𝜔2
 is normalized amplitude of the field. 

 

 The solution of the initial value problem in this case is 

𝑓 𝑡, 𝑧, 𝑝𝑧 = 𝑓0
𝑧 −

𝑝𝑧

𝑚
𝑡 + 𝛼 ∙ sin 𝜔𝑡 +𝜑0 − sin𝜑0 − 𝜔𝑡 cos 𝜔𝑡 +𝜑0 , 

 𝑝𝑧+𝛼𝑚𝜔 ∙ cos 𝜔𝑡 +𝜑0 − cos𝜑0
 (3.15) 

 Assuming the initial distribution like (3.9) yields the particle distribution function: 

𝜌 𝑡, 𝑧 = 𝐺  𝑧 + 𝛼 ∙ sin 𝜔𝑡 +𝜑0 − sin𝜑0 − 𝜔𝑡 cos𝜑0   (3.16) 

 

 

 14 



Parameters: 

  𝐸0 = 60
𝑀𝑉

𝑚
, 𝜔 = 2𝜋 ∙ 1.3𝐺𝐻𝑧, which 

corresponds to 𝛼 = 0.158𝑚.  

  Gaussian initial distribution with 2 mm rms 
bunch length  

 3 initial (launch) phases 𝜑0 = 10; 40; 70𝑑𝑒𝑔 

15 

(upper row) - static nonrelativistic solution 
(3.11):  

𝜌𝑛𝑟 𝑡, 𝑧 = 𝐺  𝑧 −
𝑒𝐸0 sin𝜑0 𝑡

2

2𝑚
  

 

(middle row) – static relativistic solution 
(3.10) (𝐹0 → 𝑒𝐸0 sin𝜑0): 

𝜌 𝑡, 𝑧 = 𝐺  𝑧 +
𝑐

𝐹0
𝑚𝑐 − 𝑚2𝑐2 + 𝐹0𝑡

2  

 

(bottom row) – time dependent 
nonrelativistic solution (3.16): 

𝜌 𝑡, 𝑧 = 𝐺( 𝑧 + 𝛼 ×
× sin 𝜔𝑡 +𝜑0 − sin𝜑0 − 𝜔𝑡 cos𝜑0 ) 



 the problem of the plasma (beam) injection through the z=0 
plane.  

𝜕𝑓

𝜕𝑡
+ 𝑣𝑧

𝜕𝑓

𝜕𝑧
+ 𝐹𝑧

𝜕𝑓

𝜕𝑝𝑧
= 0   (3.17) 

𝑓 𝑡, 𝑧 = 0, 𝑝𝑧 = 𝑓0 𝑡, 𝑝𝑧    (3.18) 

 

 now the z coordinate serves as a fixed (‘evolution”) variable.  

 characteristic system (3.3) remains but it should be resolved 
now in a different way: 

𝑑𝑡

𝑑𝑧
=

1

𝑣𝑧
,    

𝑑𝑝𝑧

𝑑𝑧
=

𝐹𝑧

𝑣𝑧
   (3.19) 

 

 this system has to be completed by boundary conditions 

𝑡(𝑧 = 0) = 𝑡0,         𝑝𝑧 (𝑧 = 0) = 𝑝𝑧0  (3.20) 
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 For the simplicity let us consider a nonrelativistic case  𝑝𝑧= 𝑚𝑣𝑧 with a constant 
Lorenz force 𝐹𝑧 = 𝐹0 = 𝑐𝑜𝑛𝑠𝑡. Under these assumptions the solution of the characteristic 
system (3.19)-(3.20) can be written as 

𝑝𝑧 = 𝑝𝑧0
2 + 2𝑚𝐹0𝑧,     𝑡 = 𝑡0 +

1

𝐹0
𝑝𝑧0
2 + 2𝑚𝐹0𝑧 − 𝑝𝑧0   (3.21) 

 Following the same scheme as above: 

𝑝𝑧0 = 𝑝𝑧
2 − 2𝑚𝐹0𝑧,     𝑡0 = 𝑡 +

1

𝐹0
𝑝𝑧
2 − 2𝑚𝐹0𝑧 − 𝑝𝑧   (3.21) 

 The solution of the boundary value problem in this case takes a form: 

𝑓 𝑡, 𝑧, 𝑝𝑧 = 𝑓0 𝑡0, 𝑝𝑧0 = 𝑓0 𝑡 +
1

𝐹0
𝑝𝑧
2 − 2𝑚𝐹0𝑧 − 𝑝𝑧 , 𝑝𝑧

2 − 2𝑚𝐹0𝑧   (3.22) 

 Assuming that cold plasma (beam) injected through the z=0 plane has temporal 
profile 𝐺(𝑡): 

𝑓 𝑡, 𝑧 = 0, 𝑝𝑧 = 𝑓0 𝑡, 𝑝𝑧 = 𝐺(𝑡)  ∙ 𝛿(𝑝𝑧)    (3.23) 

 and applying an integration in 𝑝𝑧 one obtains for the particle density evolution: 

𝜌 𝑡, 𝑧 = 𝐺  𝑡 −
2𝑚𝑧

𝐹0
     (3.24) 
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  For the relativistic (but still static) case ( HW ): 

𝜌 𝑡, 𝑧 = 𝐺  𝑡 −
1

𝐹0

𝐹0𝑧

𝑐
∙ 2𝑚𝑐 +

𝐹0𝑧

𝑐
 (3.25) 
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  For the nonrelativistic (but still static) case: 

𝜌 𝑡, 𝑧 = 𝐺  𝑡 −
2𝑚𝑧

𝐹0
  (3.24) 

 
Parameters: 

  𝐸0 = 60
𝑀𝑉

𝑚
, 𝜔 = 2𝜋 ∙ 1.3𝐺𝐻𝑧, which 

corresponds to 𝛼 = 0.158𝑚.  

  Gaussian temporal profile with 6.6 ps rms 
duration 

 3 initial (launch) phases 𝜑0 = 10; 40; 70𝑑𝑒𝑔 



 Collisionless plasma  kinetic aproach 

 Kinetic Vlasov equation 

 Cauchy problem for PDE 

 Cauchy problem for Vlasov equation: 
◦ Initial value problem 

◦ Boundary value problem 

 

BUT! This method is rather restricted: 

 strong nonlinearity  fields (external + self) 

integration over initial (boundary) conditions 

𝑓 𝑡, 𝑧, 𝑝𝑧 =  𝑑𝑡0𝑑𝑝𝑧0 𝑓0 𝑡0, 𝑝𝑧0 𝛿 𝑡 − 𝑇(𝑡, 𝑧, 𝑝𝑧, 𝑡0, 𝑝𝑧0) 𝛿 𝑝𝑧 − 𝑃𝑧(𝑡, 𝑧, 𝑝𝑧, 𝑡0, 𝑝𝑧0)  
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