Report

Week 50: FLASH bio

Anna Grebinyk for PPS, 21.12.23

BioPower

+ STRANGE STATISTIC:

- 2 sets of HDR, 2 cell lines
- 1 set of LDR, 1 cell line

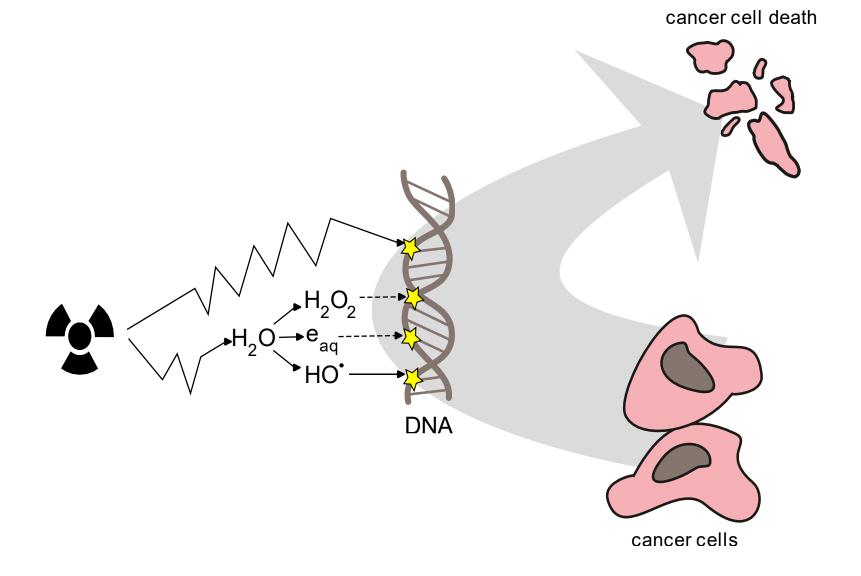
Assays done:

- Comet assay samples collected & frozen analysis needs a few weeks Paul
- Clonogenic assay samples seeded staining on 26.-28. Dec Yuliia & Aleks & Anna
- MTT samples seeded & read-out on 13.-15. Dec Yuliia & Aleks
- Caspases samples seeded & read-out on 13.-15. Dec Anna & Aleks
- → analysis ongoing

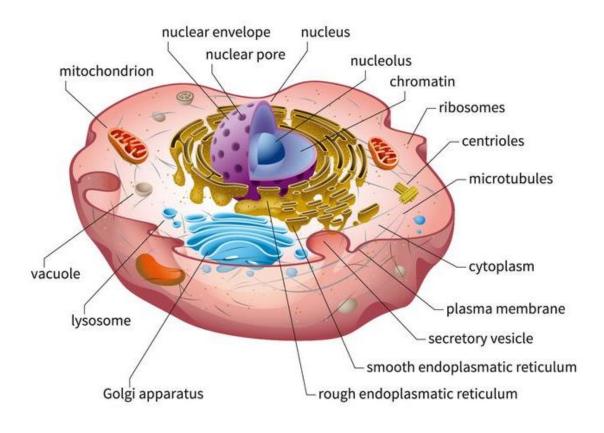
Assays tested:

ROS:

- DCFH-DA 13. Dec Anna
- DHE 13. Dec Aleks
- H₂O₂ 13. Dec <u>Paul</u>


Antioxidant system:

• Gluth - 14. Dec - Paul

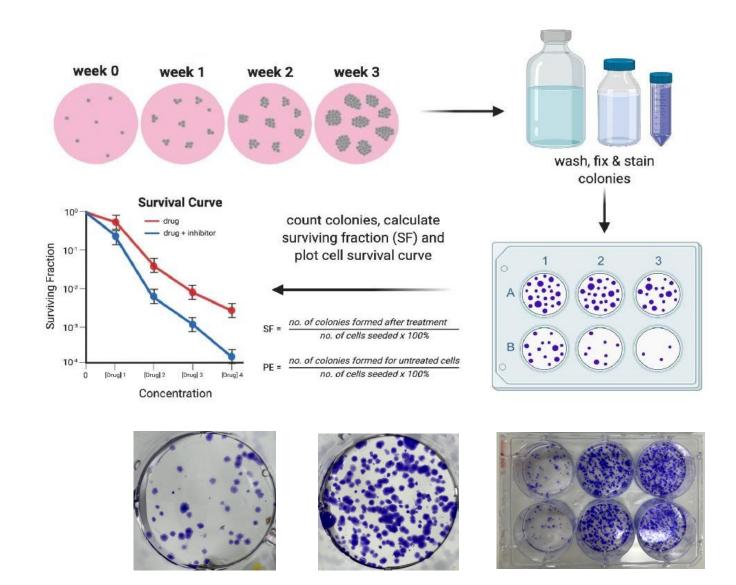

Biomolecules oxidation:

- LPO 14. Dec Sergii
- → analysis ongoing, first look the assays are not ok with given conditions
- → for oxidant assays cells should be irradiated in PBS → time from Wildau-PITZ-Wildau ≤ max 2-3 h (to be tested)

Radiobiological effects

Animal cell

- basic structural & functional unit of life
- specified function & tasks
- capable of specialization & mobility
- cytology study of cells

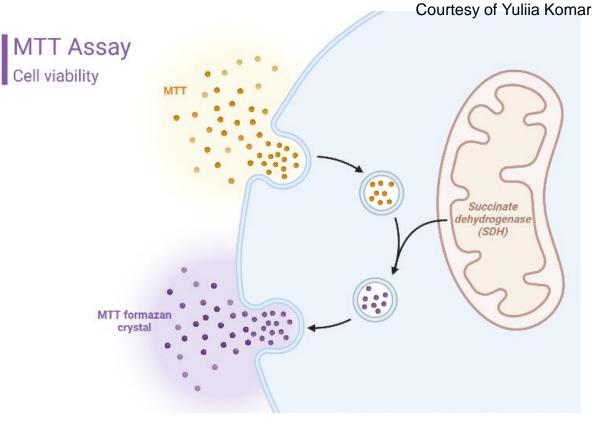

Life?

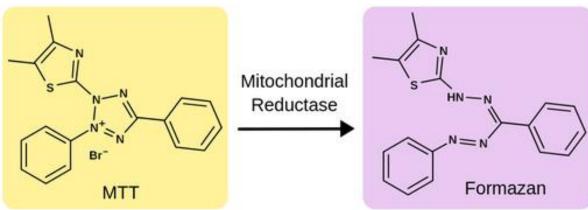
- reproduction
- heredity
- cellular organization
- growth and development
- response to stimuli
- adaptation through evolution
- homeostasis and metabolism

Clonogenic assay

Cell proliferation

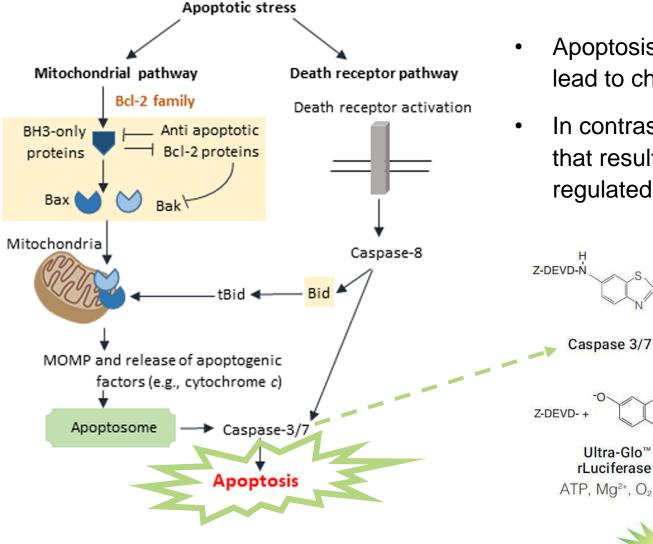
- colony formation assay is an in vitro cell survival assay based on the ability of a single cell to grow into a colony
- initially used in the field of radiobiology
- has become a standard tool in cancer research to evaluate cellular growth and the cytotoxic or genotoxic effects




MTT Assay

Cell viability

- colorimetric assay for assessing cell metabolic activity
- NAD(P)H-dependent cellular oxidoreductase enzymes reflect the number of viable cells
- Reduction of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to its insoluble formazan, which has a purple color
- used to measure cytotoxicity (loss of viable cells) or cytostatic activity (shift from proliferation to quiescence)



The Caspase-Glo® 3/7 assay

Homogeneous Assay Measures Caspase-3/7 Activity

- Apoptosis programmed cell death, biochemical events that lead to characteristic cell changes (morphology) and death
- In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis is a highly regulated and controlled process
 - Adding the Caspase-Glo® 3/7
 Reagent results in cell lysis,
 followed by caspase cleavage of
 the substrate
 - This liberates free aminoluciferin, which is consumed by the luciferase, generating a "glowtype" luminescent signal

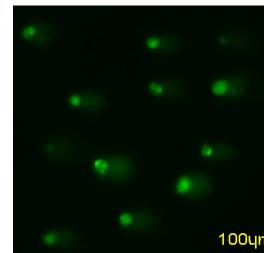
Comet Assay (Single-Cell Gel Electrophoresis)

DNA damage

What is measured?

- comet assay is used measure DNA damage of individual cells
- assay sensitivity to DNA damage is modified by selecting electrophoresis solution:
 - TBE electrophoresis solution: ssDNA breaks and dsDNA breaks
 - alkaline electrophoresis solution: ssDNA breaks, dsDNA breaks, majority of AP sites, alkali labile DNA adducts

Principle

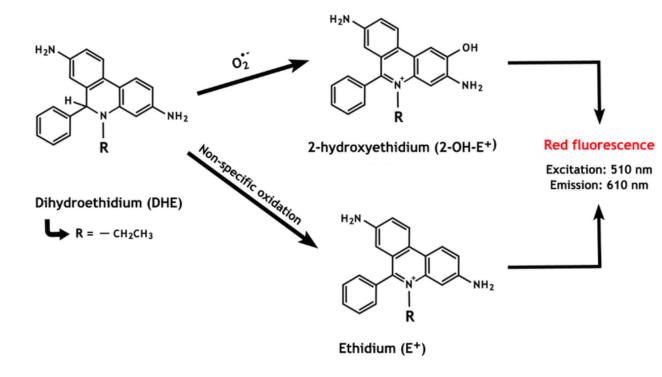

- during electrophoresis
 - intact DNA remains confined to the cell nucleus
 - fragmented DNA migrates in the electric field → forms "comet tail"

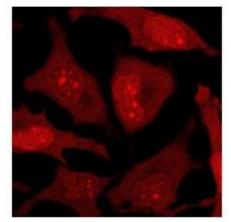
Main Assay Steps

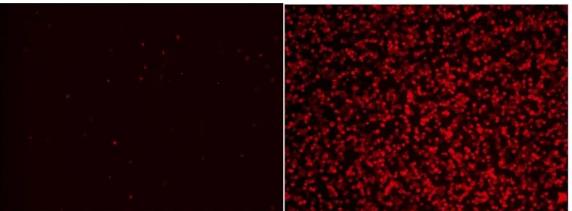
- immobilization of cells in agarose gel matrix
- incubation in lysis buffer and alkaline solution
- electrophoresis, washing and drying
- DNA staining using fluorescent dye
- image capture using a fluorescent microscope
- automated image analysis

OxiSelect 96-Well Comet Assay Kit, Cell Biolabs, Inc.

intact DNA






DHE Assay

Intracellular ROS level

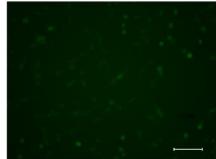
- Dihydroethidium (DHE) a fluorescent probe for the detection of ROS generation
- specific for superoxide and hydrogen peroxide
- measures ROS directly in live cells
- DHE is oxidized by superoxide to form 2hydroxyethidium (2-OH-E+)
- DHE is oxidized by non-specific oxidation by other ROS sources to form ethidium (E+)

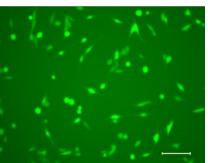
DCFH-DA Assay

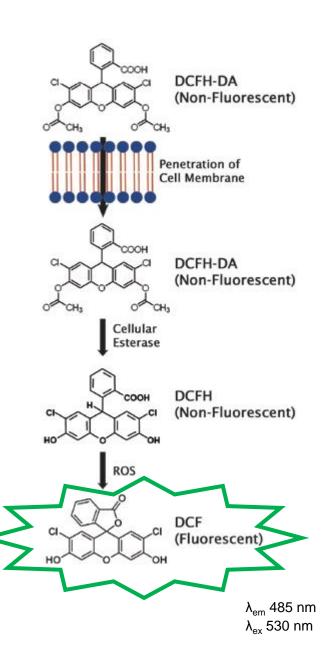
Intracellular ROS level

• 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) – a fluorescent probe for the detection of ROS generation

What is measured?


specific for hydroxyl, peroxyl and other ROS


Principle

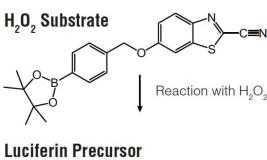

- DCFH-DA is taken up by cells where cellular esterase cleaves off the acetyl groups, resulting in DCFH
- Oxidation of DCFH by ROS converts the molecule to DCF, which emits green fluorescence

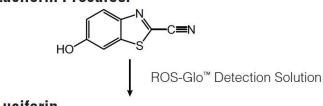
Main Assay Steps

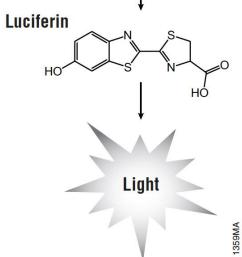
- cells are transferred to PBS
- 5 μM DCFH-DA is added, incubated at dark
- fluorescence measured using a plate reader each 10 min up to 50 min

Page 10

H₂O₂ Assay Intracellular H₂O₂ level


Principle


- substrate reacts with H₂O₂, generating a luciferin precursor
- luciferin precursor is converted by D-cysteine to luciferin
- luciferin reacts with luciferase, thereby producing a light signal proportional to H₂O₂ level


Main Assay Steps

- samples are transferred into 96-well plates
- H₂O₂ substrate solution is added & incubated for 1 h
- ROS-Glo Detection Solution added & incubated for 20 min
- · luminescence is measured using a plate reader

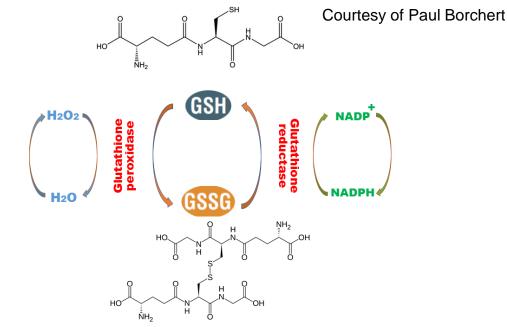
ROS-Glo H₂O₂ Assay, Promega

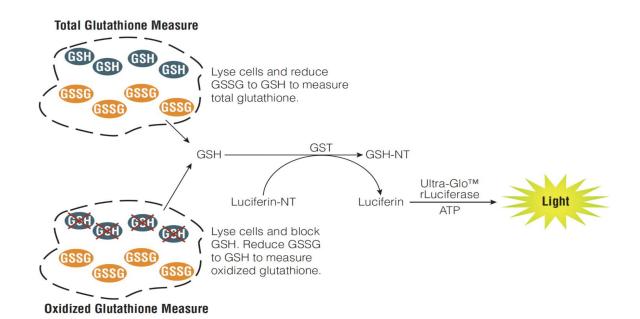
Glutathione Assay

Intracellular glutathione level

What is measured?

total (TG) or oxidized (OG) glutathione level


Principle


- GSSG (oxidized glutathione) is reduced to GSH
- cells are lysed, releasing glutathione
 - for OG: GSH is blocked
- under the presence of GSH, glutathione S-transferase catalyzes reaction of luciferin-NT to luciferin
- luciferin reacts with luciferase, thereby producing a light signal proportional to GSSG+GSH / GSSG level

Main Assay Steps

- samples are transferred into 96-well plates
- TG / OG reagent added & incubated for 5 min
- luciferin generation reagent is added & incubated for 30 min
- luciferin detection reagent is added & incubated for 15 min
- luminescence is measured using a plate reader

GSH/GSSG-Glo Assay, Promega

Lipid Peroxidation (LPO) Assay

LPO Assay Kit, BQC Redox Technologies

What is measured?

lipid peroxides in cells

Principle

- lipid peroxides quickly decompose into reactive aldehydes, which are used as biomarkers for LPO
- 4-HNE and MDA react with an indole compound to produce a chromophore

Main Assay Steps

- samples are transferred into 1.5 ml centrifuge tubes
- solution A and reagent B is added
- mixture is incubated for 40 min
- transferred into a 96-well plate
- absorbance at 586 nm using a plate reader

malondialdehyde (4-MDA)

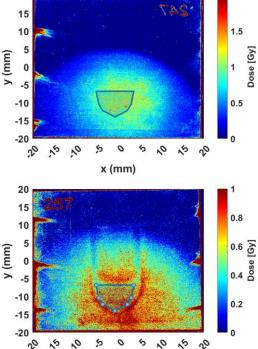
4-hydroxynonenal (4-HNE)

$$H_3C$$
OH


Week 50, FLASH bio: ongoing report

Physics:

- HDR & LDR irradiation of HEL299 & A549 cells
- High is ok for LDR, but not HDR → ?
- 9 film pairs are scanned → 10th pair not analysed? (last control each set)
- High background/noise (especially on the films after tube → backscattering?) during beam prep
- Beam jitter high & double dose irradiation with HDR
- Work timing failed


Biology:

- Cell transfer at 37°C
- 4 cell culture compatible assays are under analysis:
 - DNA damage with comet assay
 - Cell proliferation with clonogenic assay
 - Cell viability with MTT
 - Cell death type with Caspase 3/7
- 5 redox status assays tested → cells should be irradiated in PBS for:
 - 。 ROS with DCFH-DA, DHE and Promega
 - Antioxidant system with glutathione ratio
 - Biomolecules oxidation with lipid peroxidation (MDA)

Cell transfer at 37°C in the CellBox Go Incubator


(PITZ is beta-tester of the device)

0.3 x 10⁶ cells in 300 μL, irradiated with 1 Gy

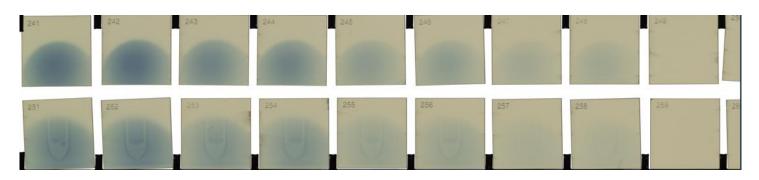
13. Dec – HDR

HEL299 and A549 cells

HDR set 3 - cancelled

Booster and gun interlocks

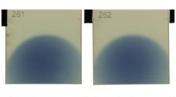
HDR extra


- Theoretical maximum 15 Gy
- Practical maximum 13 Gy with the given beam
- 11.56 Gy irradiated 6 samples
- 2 samples double irradiated

Page 15

14. Dec - LDR

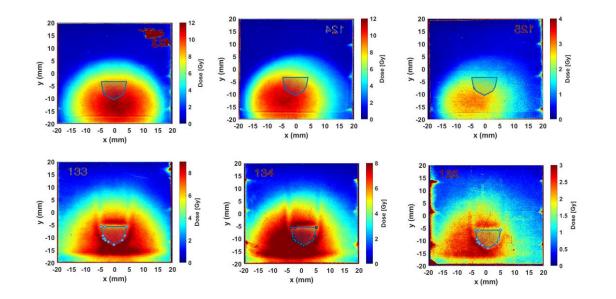
• Only A549 cells


LDR set 1

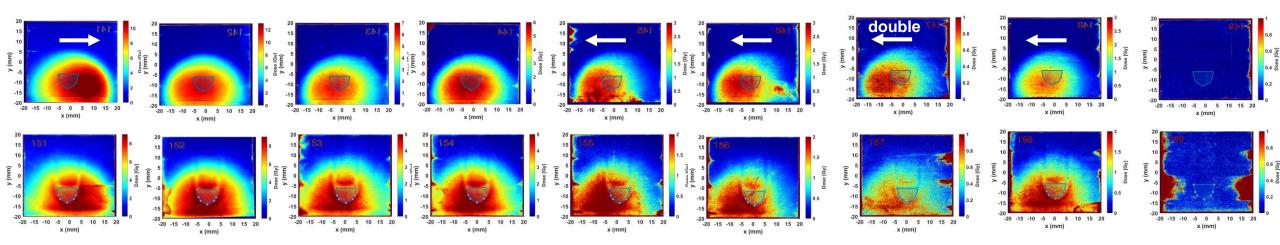
delivered dose	difference,	difference,%	Av	Planned
uose	Gy	unierence,%	AV	Flaimeu
9.986122	0.9	-11	10.061882	9
10.13764	0.9	-13		
5.514225	0.5	-10	5.5098011	5
5.505377	0.5	-10		
2.437332	0.2	-6	2.3958251	2.3
2.354318	0.2	-2		
0.944101	0.1	6	0.9934942	1
1.042888	0.1	-4		
0.03476	0.035		0.0347596	0
				1

LDR extra

• 22 Gy irradiated

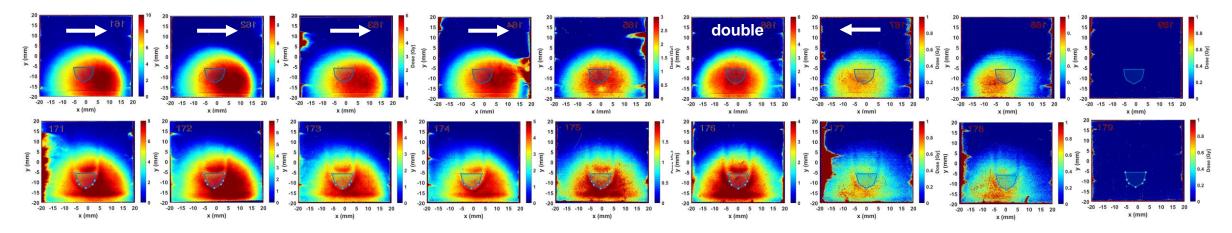


	delivered		difference,		
	dose		Gy	difference,%	
	00.40000		4.4		r
	23.42928		1.4	-6	
	21.81675		-0.2	1	
Wł	ny with	sar	ne time (8 min 4 s	ec)
	1.	6 G	y differei	nce?	
	0.041779		0.0		


DELIVERED DOSE ESTIMATION

HDR dosimetry

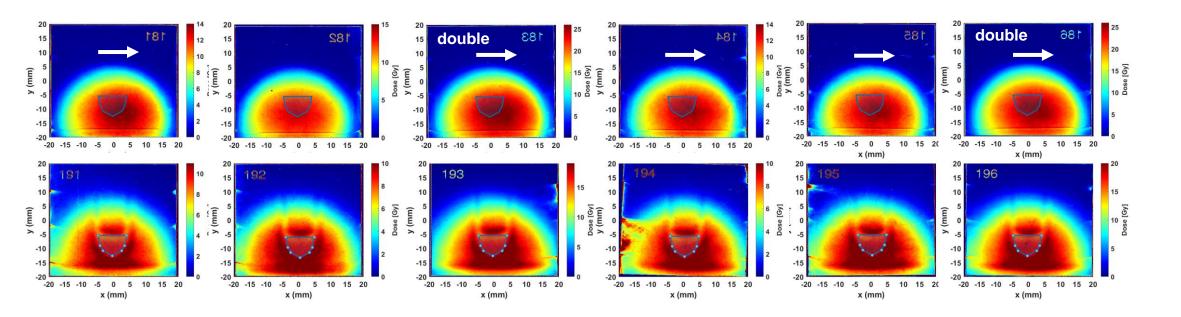
- Cells were already delivered
- Dosimetry scanned & analysed
- Dose + 15% in NoP based on the scanned films
- Hight is adjusted with beam


HDR set 1 – irradiated ok

- Delivered doses ± 8 % (one 14%)
- Dose duplication 12.5 % for all sets 18 % (4 out of 22)
- Beam jitter
- Samples position should be set lower / Beam position should be set higher

BEAM JITTER

HDR set 2 – irradiated not ok

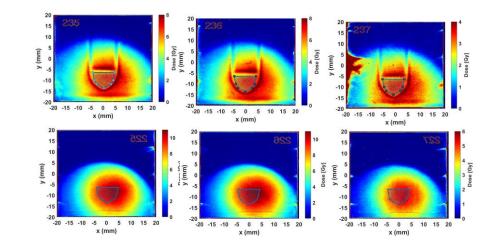


- Delivered doses ± 6 41 %
- Dose duplication 1 out of 8
- Beam jittering huge
- Samples position should be set lower / Beam position should be set higher

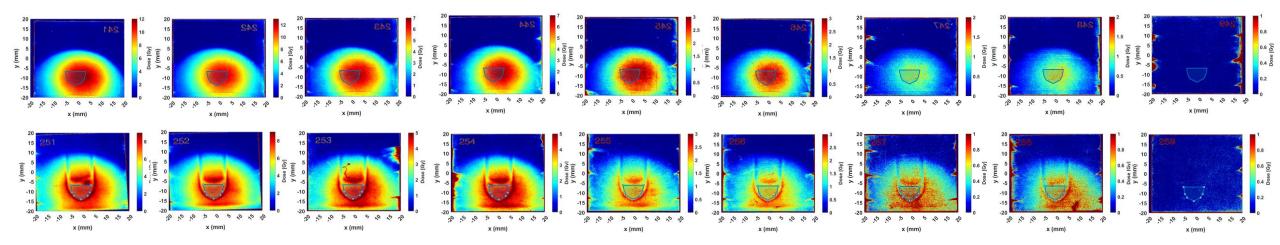
DOSE DUPLICATION

HDR set extra

- For testing bioassays & higher differences higher doses are needed
- 15 Gy planned as max possible
- 13 Gy calculated as max
- 11.56 Gy delivered

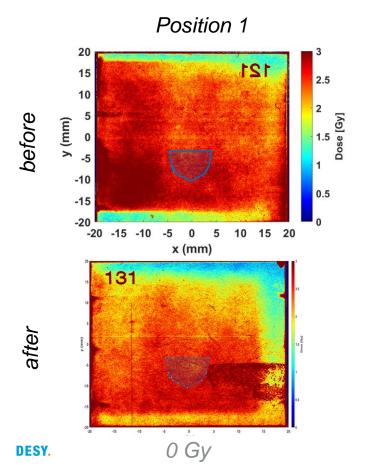


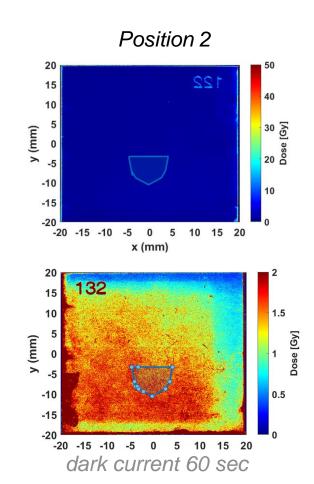
- Delivered doses ± 12 %
- Dose duplication 2 out of 6

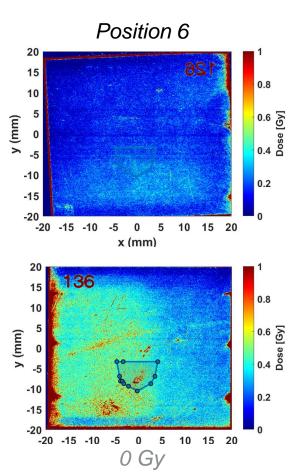

DELIVERED DOSE ESTIMATION

LDR dosimetry

- Planned dose corrected with delivered HDR dose
- Cells were already delivered
- Dosimetry scanned & analysed
- Dose + 10% in NoT based on the scanned films

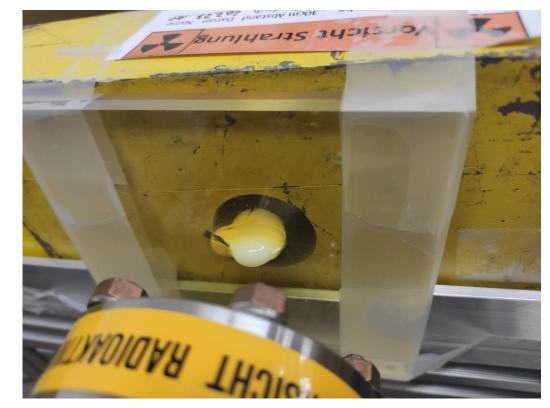

LDR set 1 – irradiated ok




- Delivered doses ± 13%
- No dose duplication
 - Hight is ok
- Horizontal position could be improved

HIGH BACKGROUND

- especially on the films after tube
- w/o eppie shadow
- with specific shadow pattern
- → backscattering?



SCATERRING PLATE DEMAGE

- not only melted, but vaporized
- → more radiation hard material?

Courtesy of Felix Riemer

Time challenge failed

planned

to do:	Operation						
Week	Mon	Tue	Wed	Thu	Fri	Sat	Sun
50	Dec-11	Dec-12	Dec-13	Dec-14	Dec-15	Dec-16	Dec-17
Morn.			dosimotry	dosimetr			
07:00	Stephan	Gross	Krasilnikov	L Stephan	Stephan	Vashchenko	Vashchenko
to	Zeeshan	Kalantaryan	dosimetry Krasilnikov HDR Kalantaryan	Riemer	Riemer	Zeeshan	Amirkhanyan
15:30			Cells				
Late			LIDB	Cells, LDR			
15:00	Vashchenko	Vashchenko	HDR Gross	Gross		Boonpornpras	Boonpornpras
to	Kelisani	Zhang	Zhang	Lotfi		Lotfi	Riemer
23:30							
Night			D				
23:00	Richard	Beamind	Beam	Hoffmann		Gross	Gross
to	Dmitriiev	transport	transport	Zeeshan		Kalantaryan	Kalantaryan
07:30		HDR .	LDR				

- Inform Anna 3 h before sample installation into tunnel
- Irradiate cells as soon as possible

done

to do:	Operation						
Week	Mon	Tue	Wed	Thu	Fri	Sat	Sun
50	Dec-11	Dec-12	Dec-13	Dec-14	Dec-15	Dec-16	Dec-17
Morn.			Beam				
07:00	Stephan	Gross		dosimetry	Stephan	Vashchenko	Vashchenko
to	Zeeshan	Kalantaryan	Kalantaryan HDR	LDR LDR	Riemer	Zeeshan	Amirkhanyan
15:30			прк	LDK			
Late			dosimetry	/ .			
15:00	Vashchenko	Vashchenko		Cells, LDR		Boonpornpras	Boonpornpras
to	Kelisani	Zhang	Zhang	Lotfi		Lotfi	Riemer
23:30			Cells,				
Night			HDR				
23:00	Richard	Beam _{ard}	Hoffmann	Hoffmann		Gross	Gross
to	Dmitriiev	transport	Beaman	Zeeshan		Kalantaryan	Kalantaryan
07:30		HDR	transport				

- Cell delivered as informed with 2 extra sets each time
- Each time + 1.5-2 h waiting time (ongoing dosimetry analysis) before irradiation
- HDR set over
- On 13. Dec cell irradaítion finished at 10:20 PM → working time for biology group until 4:40 AM !!!

So, what?

Physics:

- High is ok for LDR → to be measured & used for next experiments, HDR beam to position as LDR
- 9 film pairs are scanned → 10th pair not analysed? (last control each set)
- High background/noise (especially on the films after tube → backscattering?) during beam prep → to be improved / separeted with dosimetry
- Beam jitter high & double dose irradiation with HDR → to be improved?
- Scaterring plate to be replaced
- Work timing should be much improved → cells are to be irradiated before 15:00 (better earlier):
 - o The beam quality should be tested → "green light" for bio experiment
 - $_{\circ}$ Dosimetry prep should be done at night ightarrow plan biowork when SSB on night shift
 - Anna participation in shifts?
 - Someone else responsible for dosimetry?
 - Do 1 set per day?
- Some bio assays need higher doses ≤ 30 (≤ 50) Gy to 300 µL sample → ?

Biology:

- 4 cell culture compatible assays are under analysis
- For 5 redox status assays cells should be irradiated in PBS → less time for irradiation → to be tested