

6D Beam Envelope Equations: An Ultrafast Computational Approach for Interactive Modeling of Accelerator Structures

By:

M. Dayyani Kelisani

1. Deutsche Elektronen-Synchrotron (DESY), Zeuthen, Germany.

2. Paul Scherrer Institute (PSI), Villigen, CH-5232, Switzerland.

3. Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

4. European Organization for Nuclear Researches (CERN), Geneva, Switzerland.

Contents

1. Equations of Motion and Ray Equations

2. 6D Envelope Equations

3. Applications

1.1 Equations of Motion

1.1 Equations of Motion

1.1 Equations of Motion

5

$$\overrightarrow{B^{sm}} = \left(\hat{z} - \hat{x}\frac{\Delta x}{2}\frac{d}{dz} - \hat{y}\frac{\Delta y}{2}\frac{d}{dz}\right)\mu^{sm}(z)$$

$$\mu^{sm} = \left(\vec{B}^{sm} \cdot \hat{z}\right)|^{\Delta \vec{r} = 0}$$

$$(\Delta x + i\Delta y)'' + \left(\frac{\gamma_0\gamma_0'}{\gamma_0^2 p_0^2} + \frac{\eta(\vec{E}\cdot\vec{\beta})}{\gamma\beta_0} + \frac{i\eta c}{\gamma\beta_0}\mu^{sm}\right)(\Delta x + i\Delta y)' + \frac{i\eta c\beta_z}{2\gamma\beta_0^2}\frac{d\mu^{sm}}{dz}(\Delta x + i\Delta y)$$

$$= \frac{\eta}{\gamma\beta_0^2}(E_x + iE_y)$$
Coupling Due to Solenoidal Fields
$$+ \frac{i\eta c\beta_z}{\gamma\beta_0^2}((B_x - B_x^{sm}) + i(B_y - B_y^{sm})))$$

2.1 6D Envelope Equations

2.1 6D Envelope Equations

2.3 Bunch Distribution

Dynamics independent of the bunch detailed structure

No matter what is the distribution just it must provide all 6 parameters

$$\mathcal{F}_{u}(\Delta u, \Delta u') = \frac{p_{0}}{2\varepsilon_{u}} e^{-\left[\left(\frac{p_{0}\Lambda_{u}}{\sqrt{2}\varepsilon_{u}}\Delta u\right)^{2} - 2\frac{p_{0}^{2}\sigma_{u}\sigma_{u}'}{2\varepsilon_{u}^{2}}\Delta u\Delta u' + \left(\frac{p_{0}\Lambda_{u}}{\sqrt{2}\varepsilon_{u}}\Delta u'\right)^{2}\right]}$$

$$\sqrt{\langle \Delta u^2 \rangle} = \sigma_u$$

$$p_0 \sqrt{\langle \Delta u^2 \rangle \langle \Delta u'^2 \rangle} - \langle \Delta u \Delta u' \rangle^2} = \varepsilon_u$$

$$6D Gaussian distribution$$

$$\mathcal{F}(\Delta x, \Delta y, \Delta z, \Delta x', \Delta y', \Delta z')$$

$$\mathcal{F}_x(\Delta x, \Delta x')\mathcal{F}_y(\Delta y, \Delta y')\mathcal{F}_z(\Delta z, \Delta z')$$

Space Charge Forces

$$f_b = \frac{\eta q_b}{8\pi\sqrt{\pi}\epsilon_0}$$

$$F_{x}^{s} \approx + \frac{f_{b}}{\beta_{0}^{2} \gamma_{0}^{3}} \times \frac{\alpha_{x}}{\sigma_{x} \sigma_{z}}$$

$$- \frac{f_{b}}{\gamma_{0}} \left\{ \frac{(\Lambda_{x}^{2} + 2\sigma_{x}'^{2})\alpha_{x} - \sigma_{x}'^{2}\alpha_{xx}}{2\sigma_{x} \sigma_{z}} + \frac{8\Lambda_{y}^{2}\alpha_{x} - \sigma_{y}'^{2}\alpha_{xy}}{16\sigma_{x} \sigma_{z}} + \frac{(1 - p_{0}^{2})(2\Lambda_{z}^{2}\alpha_{x} - \sigma_{z}'^{2}\alpha_{xz})}{4\sigma_{x} \sigma_{z}} \right\}$$

$$- \frac{f_{b}}{\gamma_{0}} \left\{ \frac{(\Lambda_{x}^{2} + 2\sigma_{x}'^{2})\alpha_{x} - \sigma_{x}'^{2}\alpha_{xx}}{\sigma_{x} \sigma_{z}} + \frac{\sigma_{x}'\sigma_{y}'(8\alpha_{y} - \alpha_{xy})}{8\sigma_{z} \sigma_{y}} + \frac{(1 - p_{0}^{2})\sigma_{x}'\sigma_{z}'(2\gamma_{0}^{2}\sigma_{z}^{2}\alpha_{z} - \sigma_{x}\sigma_{y}\alpha_{xz})}{2\sigma_{x}\sigma_{y}\gamma_{0}^{2}\sigma_{z}^{2}} \right\}$$

$$\begin{split} G_{x}^{s} &= + \frac{f_{b}\sigma_{x}'}{\beta_{0}^{2}\gamma_{0}^{3}\Lambda_{x}} \frac{\alpha_{x}}{\sigma_{x}\sigma_{z}} \\ &- \frac{f_{b}\sigma_{x}'}{2\gamma_{0}\Lambda_{x}} \bigg\{ 3 \frac{3\Lambda_{x}^{2}\alpha_{x} - {\sigma_{x}'}^{2}\alpha_{xx}}{\sigma_{x}\sigma_{z}} + \frac{8\Lambda_{y}^{2}\alpha_{x} - {\sigma_{y}'}^{2}\alpha_{xy}}{8\sigma_{x}\sigma_{z}} + (1 - p_{0}^{2}) \frac{2\Lambda_{z}^{2}\alpha_{x} - {\sigma_{z}'}^{2}\alpha_{xz}}{2\sigma_{x}\sigma_{z}} \bigg\} \\ &- \frac{f_{b}\sigma_{y}'}{8\gamma_{0}\Lambda_{x}} \bigg\{ \frac{8\Lambda_{x}^{2}\alpha_{y} - {\sigma_{x}'}^{2}\alpha_{xy}}{\sigma_{y}\sigma_{z}} \bigg\} - \frac{f_{b}\sigma_{z}'}{2\gamma_{0}\Lambda_{x}} \bigg\{ (1 - p_{0}^{2}) \frac{2\gamma_{0}^{2}\sigma_{z}^{2}\Lambda_{x}^{2}\alpha_{z} - {\sigma_{x}'}^{2}\sigma_{x}\sigma_{y}\alpha_{xz}}{\sigma_{x}\sigma_{y}\sigma_{z}^{2}} \bigg\} \end{split}$$

Space Charge Forces

$$f_b = \frac{\eta q_b}{8\pi\sqrt{\pi}\epsilon_0}$$

$$F_z^S \cong + \frac{f_b}{\beta_0^2 \gamma_0^3} \times \frac{\alpha_z}{\sigma_x \sigma_y} - \frac{f_b}{\gamma_0} \left\{ \frac{3(1 - p_0^2) \left(2\left(\Lambda_z^2 + 2\sigma_z'^2\right)\alpha_z - \sigma_z'^2\alpha_{zz}\right)}{4\sigma_x \sigma_y} + \frac{2\gamma_0^2 \sigma_z^2 \Lambda_x^2 \alpha_z - \sigma_x'^2 \sigma_x \sigma_y \alpha_{xz}}{4\sigma_x \sigma_y \gamma_0^2 \sigma_z^2} \right\}$$

$$\begin{split} G_{z}^{s} &= + \frac{f_{b}\sigma_{z}^{\ \prime}}{\beta_{0}^{\ 2}\gamma_{0}^{\ 3}\Lambda_{z}} \times \frac{\alpha_{z}}{\sigma_{x}\sigma_{y}} \\ &- \frac{f_{b}\sigma_{z}^{\ \prime}}{2\gamma_{0}\Lambda_{z}} \Biggl\{ 3(1-p_{0}^{\ 2}) \frac{6\Lambda_{z}^{\ 2}\alpha_{z} - \sigma_{z}^{\ \prime}^{\ 2}\alpha_{zz}}{2\sigma_{x}\sigma_{y}} + \frac{2\gamma_{0}^{\ 2}\sigma_{z}^{\ 2}\Lambda_{x}^{\ 2}\alpha_{z} - \sigma_{x}^{\ \prime}^{\ 2}\sigma_{x}\sigma_{y}\alpha_{xz}}{2\sigma_{x}\sigma_{y}\gamma_{0}^{\ 2}\sigma_{z}^{\ 2}} + \frac{2\gamma_{0}^{\ 2}\sigma_{z}^{\ 2}\Lambda_{y}^{\ 2}\alpha_{z} - \sigma_{y}^{\ \prime}^{\ 2}\sigma_{x}\sigma_{y}\alpha_{yz}}{2\sigma_{x}\sigma_{y}\gamma_{0}^{\ 2}\sigma_{z}^{\ 2}} \Biggr\} \\ &- \frac{f_{b}\sigma_{x}^{\ \prime}}{2\gamma_{0}\Lambda_{z}} \Biggl\{ \frac{2\Lambda_{z}^{\ 2}\alpha_{x} - \sigma_{z}^{\ \prime}^{\ 2}\alpha_{xz}}{\sigma_{x}\sigma_{z}} \Biggr\} - \frac{f_{b}\sigma_{y}^{\ \prime}}{2\gamma_{0}\Lambda_{z}} \Biggl\{ \frac{2\Lambda_{z}^{\ 2}\alpha_{y} - \sigma_{z}^{\ \prime}^{\ 2}\alpha_{yz}}{\sigma_{y}\sigma_{z}} \Biggr\} \end{split}$$

Specifications	$E_k[MeV]$	σ_E [%]	$\sigma_x[mm]$	$\sigma_y[mm]$	$\sigma_{z}[mm]$	$\varepsilon_{nx}[\mu m]$	$\varepsilon_{ny}[\mu m]$	$\varepsilon_{nz}[\mu m]$
Value	5	1	$\sqrt{2}$	$2\sqrt{2}$	0.030	0.05	0.10	2.93

3.2 Solenoidal Magnet Forces

$$F_{x}^{e} = -\frac{\eta^{2}c^{2}}{4p_{0}^{2}} \left(\mu^{sm^{2}} + \mu_{z}^{sm^{2}}\sigma_{z}^{2}\right)\sigma_{x}$$

+ $\eta^{2}c^{2}\mu^{sm}\mu_{z}^{sm}\sigma_{x}\sigma_{z}\sigma_{z}' + \frac{\eta^{2}c^{2}\mu^{sm^{2}}}{4}\sigma_{x}\left(2\sigma_{x}'^{2} + \Lambda_{x}^{2} + \Lambda_{y}^{2} + \Lambda_{z}^{2}\right)$
+ $\frac{\eta^{2}c^{2}\mu_{z}^{sm^{2}}}{4}\sigma_{x}\sigma_{z}^{2}\left(2\sigma_{x}'^{2} + 2\sigma_{z}'^{2} + \Lambda_{x}^{2} + \Lambda_{y}^{2} + \Lambda_{z}^{2}\right)$

 $F_z^e = 0$

$$G_{x}^{e} = -\frac{\eta^{2}c^{2}}{4p_{0}^{2}\Lambda_{x}} (\mu^{sm^{2}} + \mu_{z}^{sm^{2}}\sigma_{z}^{2})\sigma_{x}\sigma_{x}' + \frac{\eta^{2}c^{2}\mu^{sm}\mu_{z}^{sm}}{\Lambda_{x}}\sigma_{x}\sigma_{x}'\sigma_{z}\sigma_{z}' + \frac{\eta^{2}c^{2}\mu^{sm^{2}}}{4\Lambda_{x}}\sigma_{x}\sigma_{x}'(3\Lambda_{x}^{2} - \Lambda_{y}^{2} - \Lambda_{z}^{2}) + \frac{\eta^{2}c^{2}\mu_{z}^{sm^{2}}}{4\Lambda_{x}}\sigma_{x}\sigma_{x}'\sigma_{z}^{2}(2\sigma_{z}'^{2} + 3\Lambda_{x}^{2} + \Lambda_{y}^{2} + \Lambda_{z}^{2})$$

$$\mu^{sm} = \left(\vec{B}^{sm} \cdot \hat{z}
ight) |^{\Delta \vec{r} = 0}$$

$$G_z^e = 0$$

3.2 Solenoidal Magnet Forces

3.3 Quadrupole Magnet Forces

$$F_x^e = -k^{qm}\sigma_x + \frac{k^{qm}p_0^2}{2}\sigma_x\{(2+\gamma_0^2)\Lambda_z^2 + 2{\sigma_x'}^2 + {\Lambda_x}^2 + {\Lambda_y}^2\}$$

$$F_{y}^{e} = +k^{qm}\sigma_{y} - \frac{k^{qm}p_{0}^{2}}{2}\sigma_{y}\left\{(2+\gamma_{0}^{2})\Lambda_{z}^{2} + 2\sigma_{y}'^{2} + \Lambda_{y}^{2} + \Lambda_{x}^{2}\right\}$$

$$F_z^e = -k^{qm} p_0^2 \sigma_z' (\sigma_x \sigma_x' - \sigma_y \sigma_y')$$

$$G_{x}^{e} = -\frac{k^{qm}}{\Lambda_{x}}\sigma_{x}\sigma_{x}' + \frac{k^{qm}p_{0}^{2}}{2\Lambda_{x}}\sigma_{x}\sigma_{x}'\{(2+\gamma_{0}^{2})\Lambda_{z}^{2} + 3\Lambda_{x}^{2} + \Lambda_{y}^{2}\}$$

$$G_{y}^{e} = +\frac{k^{qm}}{\Lambda_{y}}\sigma_{y}\sigma_{y}' - \frac{k^{qm}p_{0}^{2}}{2\Lambda_{y}}\sigma_{y}\sigma_{y}'\{(2+\gamma_{0}^{2})\Lambda_{z}^{2} + 3\Lambda_{y}^{2} + \Lambda_{x}^{2}\}$$

$$G_z^e = -k^{qm} p_0^2 \Lambda_z (\sigma_x \sigma_x' - \sigma_y \sigma_y')$$

$$\overline{B^{qm}} = \frac{p_0 k^{qm}}{\eta c} (\Delta y \hat{x} + \Delta x \hat{y})$$

3.3 Quadrupole Magnet Forces

3.4 Electrostatic and RF Forces

$$F_{x}^{e} = -\frac{\eta \left(\mathcal{E}_{z}^{rf} + \beta_{0}\mathcal{E}_{t}^{rf}\right)}{2\gamma_{0}\beta_{0}^{2}}\sigma_{x} - \frac{\eta \mathcal{E}^{rf}}{\gamma_{0}}\sigma_{x}'$$

+ $\frac{\eta \mathcal{E}_{z}^{rf}}{2\gamma_{0}}\sigma_{x}'\{\sigma_{y}\sigma_{y}' - 2(1 - p_{0}^{2})\sigma_{z}\sigma_{z}'\} + \frac{\eta \mathcal{E}_{z}^{rf}}{4\gamma_{0}}\sigma_{x}\{\gamma_{0}^{4}\Lambda_{z}^{2} + 2(2 + \gamma_{0}^{2})\sigma_{x}'^{2} + (2 + \gamma_{0}^{2})\Lambda_{x}^{2} + \gamma_{0}^{2}\Lambda_{y}^{2}\}$
+ $\frac{\eta p_{0}\mathcal{E}_{t}^{rf}}{4}\sigma_{x}\{(2 + \gamma_{0}^{2})\Lambda_{z}^{2} + 2\sigma_{x}'^{2} + (\Lambda_{x}^{2} + \Lambda_{y}^{2})\} + \frac{\eta p_{0}^{2}\mathcal{E}^{rf}}{2\gamma_{0}}\sigma_{x}'\{(2 + \gamma_{0}^{2})\Lambda_{z}^{2} + 3\Lambda_{x}^{2} + \Lambda_{y}^{2}\}$

$$F_{z}^{e} = + \frac{\eta \mathcal{E}_{z}^{rf}}{\gamma_{0} p_{0}^{2}} \sigma_{z} - \frac{3\eta \mathcal{E}^{rf}}{\gamma_{0}} \sigma_{z}' + \frac{\eta (1 - p_{0}^{2}) \mathcal{E}_{z}^{rf}}{2\gamma_{0}} \sigma_{z}' (\sigma_{x} \sigma_{x}' + \sigma_{y} \sigma_{y}') - \frac{\eta p_{0} \mathcal{E}_{t}^{rf}}{2} \sigma_{z}' (\sigma_{x} \sigma_{x}' + \sigma_{y} \sigma_{y}') + \frac{\eta \mathcal{E}_{z}^{rf}}{2\gamma_{0}} \sigma_{z} \{ (6 - 3\gamma_{0}^{2} - 2\gamma_{0}^{4}) (2\sigma_{z}'^{2} + \Lambda_{z}^{2}) - (\Lambda_{x}^{2} + \Lambda_{y}^{2}) \} + \frac{\eta p_{0}^{2} \mathcal{E}^{rf}}{2\gamma_{0}} \sigma_{z}' \{ 3(2 + \gamma_{0}^{2}) \Lambda_{z}^{2} + (\Lambda_{x}^{2} + \Lambda_{y}^{2}) \}$$

$$G_{x}^{e} = -\frac{\eta(\mathcal{E}_{z}^{rf} + \beta_{0}\mathcal{E}_{t}^{rf})}{2\gamma_{0}\beta_{0}^{2}\Lambda_{x}}\sigma_{x}\sigma_{x}' - \frac{\eta\mathcal{E}^{rf}}{\gamma_{0}}\Lambda_{x}$$

+ $\frac{\eta\mathcal{E}_{z}^{rf}}{2\gamma_{0}}\Lambda_{x}\{3\sigma_{x}\sigma_{x}' + \sigma_{y}\sigma_{y}' - 2(1 - p_{0}^{2})\sigma_{z}\sigma_{z}'\} + \frac{\eta\gamma_{0}\mathcal{E}_{z}^{rf}}{4\Lambda_{x}}\sigma_{x}\sigma_{x}'(\gamma_{0}^{2}\Lambda_{z}^{2} + 3\Lambda_{x}^{2} + \Lambda_{y}^{2})$
+ $\frac{\eta p_{0}\mathcal{E}_{t}^{rf}}{4\Lambda_{x}}\sigma_{x}\sigma_{x}'\{(3 + p_{0}^{2})\Lambda_{z}^{2} + 3\Lambda_{x}^{2} + \Lambda_{y}^{2}\}$

$$G_{z}^{e} = + \frac{\eta \mathcal{E}_{z}^{rf}}{\gamma_{0} p_{0}^{2} \Lambda_{z}} \sigma_{z} \sigma_{z}' - \frac{3\eta \mathcal{E}^{rf}}{\gamma_{0}} \Lambda_{z}$$

$$+ \frac{\eta (1 - p_{0}^{2}) \mathcal{E}_{z}^{rf}}{2\gamma_{0}} \Lambda_{z} (\sigma_{x} \sigma_{x}' + \sigma_{y} \sigma_{y}') - \frac{\eta p_{0} \mathcal{E}_{t}^{rf}}{2} \Lambda_{z} (\sigma_{x} \sigma_{x}' + \sigma_{y} \sigma_{y}')$$

$$+ \frac{\eta \mathcal{E}_{z}^{rf}}{2\gamma_{0} \Lambda_{z}} \sigma_{z} \sigma_{z}' \{ 3(6 - 3\gamma_{0}^{2} - 2\gamma_{0}^{4}) \Lambda_{z}^{2} - (\Lambda_{x}^{2} + \Lambda_{y}^{2}) \}$$

3.4 Electrostatic and RF Forces

Injection of a compact and high-quality electron bunch at a right phase allows for a propagation over long distances with preserving emittance.

		[Beam Characteristics				
Туре	Bunch Charge	Bunch Length	Energy Spread	Emittance	Length	Energy	
2nd	≅ 200 p <i>C</i>	< 200 <i>fs</i>	< 1%	< 2 µm	< 5m	$\cong 200 MeV$	

	Parameter	RF Gun	Buncher	Acc. I	Acc. II
RF Characteristics	Frequency	3.0	12.0	12.0	12.0
	Max Gradient	120 <i>MV/m</i>	50 <i>MV/m</i>	80 <i>MV/m</i>	80 <i>MV</i> /m
	N. Cell	1.5	30	120	120

	$\lambda[nm]$	w[ev]	r[mm]	t[ps]	q[pc]
Laser					
Characteristics	262	4.31	1.0-2.0	1.0	100-600

Parameter	<i>d</i> ₁ [<i>cm</i>]	<i>d</i> ₂ [<i>cm</i>]	<i>d</i> ₃ [<i>cm</i>]	$E_2[mV/m]$	$E_3[mV/m]$
Gradient	100	48	50	32	80

Thanks for Attention

2.2 Perturbation

γ

Perturbational Methods

$$\beta_{u} = \beta_{0}(\hat{u} \cdot \hat{z} + \Delta u')$$

$$\frac{1}{\gamma} \approx \frac{1}{\gamma_0} \left\{ 1 - p_0^2 \Delta z' - \frac{p_0^2 \gamma_0^2}{2} \Delta z'^2 - \frac{p_0^4 \gamma_0^2}{2} \Delta z'^3 - \frac{p_0^2}{2} (1 + p_0^2 \Delta z') (\Delta x'^2 + \Delta y'^2) \right\}$$

$$\frac{1 - \beta_z \beta_0}{\gamma} \approx \frac{1}{\gamma_0^3} \left(1 - 2p_0^2 \Delta z' - \frac{p_0^2 (1 - p_0^2)}{2} \Delta z'^2 - \frac{p_0^2}{2} (\Delta x'^2 + \Delta y'^2) \right)$$

$$\frac{\beta_0 - \beta_z}{\gamma} \approx \frac{\beta_0}{\gamma_0} \left(-\Delta z' + p_0^2 \Delta z'^2 + \frac{p_0^2 \gamma_0^2}{2} \Delta z'^3 + \frac{p_0^2}{2} \Delta z' (\Delta x'^2 + \Delta y'^2) \right)$$

Run 2c: Demonstrate Electron Acceleration and Emittance Preservation

