The Nobel Prize in Physics 2023

"for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter"

Andreas Hoffmann 12.10.2023

Pierre Agostini

Ferenc Krausz

Anne L'Huillier

Outline

- 1 What is an attosecond?
- 2 How to generate attosecond pulses?
- High Harmonic Generation
- Attosecond pulse trains
- Isolated attosecond pulses
- 3 How to measure attosecond pulses?
- **4** Nobel Laureates' contributions

What is an attosecond?

The natural time scale of electron motion in atoms, molecules, and solids is the attosecond (1 as= 10^{-18} s).

$$T_C = \frac{h}{E_1 - E_0} = \frac{4.135 \cdot 10^{-15} eV \cdot s}{E_1 - E_0}$$

For 10 eV : 413 as

What is the time scale of photoionization? How does the ionization work in multielectron systems? Are the ionization channels direct or indirect? How do electrons regroup during ionization?

High Harmonic Generation attosecond atomic x-ray pulse medium Simple Man's model detector/ ENERGY LEVEL LASER LIGHT experiment laser intensity: femtosecond ATOM'S FIELD >10¹⁴ W/cm² laser pulse NN. ELECTRON TUNNELING mm NUCLEUS 2 The atom's field is distorted when it is 3 The free electron is still An electron that is bound to To reattach to the atom's nucleus. an atom's nucleus cannot the electron must rid itself of the affected by the laser normally leave its atom: it affected by the laser field and gains some extra energy it gained during its pulse. When the electron does not have enough energy extra energy. When the journey. This is emitted as an (d) to lift itself out of the well is only held by a narrow field turns and changes ultraviolet flash, the wavelength of created by the atom's barrier, guantum direction, the electron is which is linked to that of the laser electrical field. mechanics allow it to pulled back in the field, and differs depending on how direction it came from. far the electron moved. tunnel out and escape. ωt₀ in rad © Johan Jarnestad/The Royal Swedish Academy of Sciences $E_{\text{max}} = q_{\text{max}} \cdot \hbar \omega = I_P + 3.17 \cdot U_P$ $U_P = \langle E_{kin} \rangle_T \propto I \cdot \lambda_L^2$ perturbative typical high-harmonic spectrum E_{kin}/U_P regime $\Delta k = q \cdot k(\omega_{I}) - k(q \cdot \omega_{I}) = \Delta k_{Disp.} + \Delta k_{Plasma} + \Delta k_{Geom.}$ 0 plateau cut-off 12 -2 0 2 6 8 10 4 20 30 50 60 0 10 40 ot in rad DESY. | The Nobel Prize in Physics 2023 | Andreas Hoffmann Page 4 harmonic order

How to generate attosecond pulses?

How to generate attosecond pulses?

Attosecond pulse trains and isolated pulses

- Harmonics are emitted every half-cycle of the driving laser pulse
- Proper focusing in the gas medium allows selection of the trajectories
- If the harmonics are in phase an attosecond pulse is formed which is repeated every halfcycle of the driving laser pulse
- The pulse duration of the driving laser should be as short as possible to have a few halfcycles contribute as possible to generate short APT
- Isolated attosecond pulses can be generated near the cutoff by spectral filtering or more advanced techniques
- Current world record: 43 as

Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver
Thomas Gaumnitz, Archi Jain, Yoann Pertot, Martin Huppert, Inga Jordan, Fernando Ardana-Lamas, and Hans Jakob

The world of electrons is explored with the shortest of light pulses

When laser light is transmitted through a gas, ultraviolet overtones arise from the atoms in the gas. In the right conditions, these overtones may be in phase. When their cycles coincide, concentrated attosecond pulses are formed.

DESY. | The Nobel Prize in Physics 2023 | Andreas Hoffmann

How to measure attosecond pulses?

XUV NIR pump-probe spectroscopy

APT: RABBIT (reconstruction of attosecond beating by interference of two-photon transitions)

IAP: FROG CRAB (complete reconstruction of attosecond bursts

Pierre Agostini

① The Ohio State University, Columbus, United States (c) 7005332548 (1)

16,091	219	53
Citations by 10,202 documents	Documents	h-index Vie

w h-graph н

> 1.206 Citations

1,189

Citations

952

783 Citations

Citations

Top 5 highest cited papers

Article	
Observation of a train of attosecond pulses from high harmonic	2.263
generation	Citations
Paul, P.M., Toma, E.S., Breger, P.,Muller, H.G., Agostini, P.	
Science, 2001, 292(5522), pp. 1689–1692	
Show abstract 🗸 View at Publisher 🛪 Related documents	

	Article • Open access
Observation of high-order harmonic generation in a bulk crystal	
Ghimire, S., Dichiara, A.D., Sistrunk, E.,Dimauro, L.F., Reis, D.A.	
	Nature Physics, 2011, 7(2), pp. 138–141
	Show abstract 🗸 View at Publisher 🛪 Related documents
	Article
	Free-free transitions following six-photon ionization of xenon atoms
	Agostini, P., Fabre, F., Mainfray, G., Petite, G., Rahman, N.K.
	Physical Review Letters, 1979, 42(17), pp. 1127–1130
	Show abstract View at Publisher Z Related documents

Article		
Precision measurement of strong field double ionization of helium		
Walker, B., Sheehy, B., Dimauro, L.F.,Schafer, K.J., Kulander, K.C.		
Physical Review Letters, 1994, 73(9), pp. 1227–1230		
Show abstract 🗸 View at Publisher 🛪	Related documents	

Review			
The physics of att	osecond light pulses		
Agostini, P., DiMauro,	L.F.		
Reports on Progress In	Physics, 2004, 67(6), pp. 813	-855	
Show abstract 🗸	View at Publisher 7	Related documents	

D----!--

Characterization of Attosecond pulse trains in two-color fields: RABBIT (reconstruction of attosecond beating by interference of two-photon transitions)

Observation of a Train of Attosecond Pulses from High Harmonic Generation

P. M. PAUL, E. S. TOMA, P. BREGER, G. MULLOT, F. AUGÉ, PH. BALCOU, H. G. MULLER, AND P. AGOSTINI, Authors Info & Affiliations

SCIENCE · 1 Jun 2001 · Vol 292, Issue 5522 · pp. 1689-1692 · DOI: 10.1126/science.1059413

1.35 fs

10

Ð

DESY. | The Nobel Prize in Physics 2023 | Andreas Hoffmann

Ferenc Krausz

() Max Planck Institute of Quantum Optics, Garching bei Munchen, Germany

56,852	954	107
Citations by 26,270 documents	Documents	h-index View h-graph

Top 5 highest cited papers

Article • Open access Attosecond physics Krausz, F., Ivanov, M. Reviews of Modern Physics, 2009, 81(1), pp. 163–234	4,584 Citations
Show abstract 🗸 View at Publisher A Related documents	
Article Intense few-cycle laser fields: Frontiers of nonlinear optics Brabec, T., Krausz, F. <i>Reviews of Modern Physics</i> , 2000, 72(2), pp. 545–591 Show abstract V View at Publisher 71 Related documents	2,887 Citations
Article Attosecond metrology Hentschel, M., Kienberger, R., Spielmann, Ch.,Drescher, M., Krausz, F. <i>Nature</i> , 2001, 414(6863), pp. 509–513 Show abstract ∨ View at Publisher <i>i</i> Related documents	2,593 Citations
Article Attosecond science Corkum, P.B., Krausz, F. Nature Physics, 2007, 3(6), pp. 381–387 Show abstract V View at Publisher A Related documents	1,820 Citations
Article Attosecond control of electronic processes by intense light fields Baltuška, A., Udem, Th., Uiberacker, M.,Hänscht, T.W., Krausz, F. <i>Nature</i> , 2003, 421(6923), pp. 611–615 Show abstract V View at Publisher A Related documents	1,555 Citations

DESY. | The Nobel Prize in Physics 2023 | Andreas Hoffmann

Generation of few-cycle pulses for HHG, Generation of isolated attosecond pulses near the cutoff

Optics Letters Vol. 22, Issue 8, pp. 522-524 (1997) + https://doi.org/10.1364/OL.22.000522

ROUP

Compression of high-energy laser pulses below 5 fs

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz Author Information - Q. Find other works by these authors -

Generation of Coherent X-rays in the Water Window Using 5-Femtosecond Laser Pulses

CH. SPIELMANN, N. H. BURNETT, S. SARTANIA, R. KOPPITSCH, M. SCHNÜRER, C. KAN, M. LENZNER, P. WOBRAUSCHEK, AND F. KRAUSZ Authors Info & Affiliations

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher & F. Krausz

Nature 414, 509–513 (2001) Cite this article

Anne L'Huillier

① Lunds Universitet, Lund, Sweden 🛛 💿 24453610100 ①

21,229	370	67
Citations by 10,567 documents	Documents	h-index \

Top 5 highest cited papers

.

Article • Open access		
Theory of high-harmonic generation by low-frequency laser fields	3,556	
Lewenstein, M., Balcou, Ph., Ivanov, M.Yu., L'Huillier, A., Corkum, P.B. Physical Paulan A 1994 49(3) np. 2112–2132		
Show abstract ∨ View at Publisher <i>i</i> Related documents		
Article		
Multiple-harmonic conversion of 1064 nm radiation in rare gases	1.226	
Ferray, M., L'Huillier, A., Li, X.F.,Mainfray, G., Manus, C.	Citations	
Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21(3), 001		
Show abstract 🗸 View at Publisher 🛪 Related documents		
Article High-order harmonic generation in rare gases with a 1-ps 1053-nm	746	
laser	Citations	
L'Huillier, A., Balcou, Ph.		
Physical Review Letters, 1993, 70(6), pp. 774–777		
Show abstract 🗸 View at Publisher 🛪 Related documents		
Article • Open access		
Attosecond pulse trains using high-order harmonics	637	
Antoine, P., L'huillier, A., Lewenstein, M.	Citations	
Physical Review Letters, 1996, 77(7), pp. 1234–1237		
Show abstract 🗸 View at Publisher 🛪 Related documents		
Article • Open access		
Electron localization following attosecond molecular photoionization	608	
Sansone, G., Kelkensberg, F., Pérez-Torres, J.F.,Martín, F., Vrakking, M.J.J.	Citations	
Nature, 2010, 465(7299), pp. 763-766		
Show abstract 🗸 View at Publisher 🛪 Related documents		

DESY. | The Nobel Prize in Physics 2023 | Andreas Hoffmann

Discovery of HHG, TDSE model for strong field laser physics, ionization dynamics with attosecond pulses

Multiple-harmonic conversion of 1064 nm radiation in rare

Gases M Ferray¹, A L'Huillier¹, X F Li¹, L A Lompre¹, G Mainfray¹ and C Manus¹ Published under licence by IOP Publishing Ltd Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 21, Number 3 Citation M Ferray *et al* 1988 *J. Phys. B: At. Mol. Opt. Phys.* 21 L31

Theoretical aspects of intense field harmonic generation

A L'Huillier¹, K J Schafer¹ and K C Kulander¹ Published under licence by IOP Publishing Ltd Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 24, Number 15 Citation A L'Huillier *et al* 1991 *J. Phys. B: At. Mol. Opt. Phys.* 24 3315

Theory of high-harmonic generation by low-frequency laser fields

M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, Anne L'Huillier, and P. B. Corkum Phys. Rev. A **49**, 2117 – Published 1 March 1994

Photoionization in the time and frequency domain

SCIENCE • 2 Nov 2017 • Vol 358, Issue 6365 • pp. 893-896 • DOI: 10.1126/science.aao7043

Thank you

Further reading:

https://attoworld.de/

<text>

Fundamentals of Attosecond Optics

Zenghu Chang

CRC Press