Summary of PITZ BC commissioning studies

PITZ Physics Seminar (PPS)

Ekkachai Kongmon

PITZ, 21 September 2023

HELMHOLTZ

Outline

PITZ Bunch Compressor

Beam trajectory simulation

Dispersion studies

Beam matching

PITZ Bunch Compressor

PITZ magnetic bunch compressor

Specifications	Details				
LCLS-I undulator					
Туре	planar hybrid (NdFeB)				
K-value	3.585 (3.49)				
Support diameter / length	30 cm / 3.4 m				
Vacuum chamber size	11 mm x 5 mm				
Period length (λ_u)	30 mm				
Periods / a module	113 periods				
e-beam					
Beam momentum	17 – 22 MeV/c				
Transvers rms beam size (σ_x, σ_y) (Gaussian beam)	1 mm				
e-beam peak current (I)	~200 – 400 A				
Bunch charge	2 nC				
Radiation					
Radiation wave length	~100 µm (~ 17 MeV/c)				

HELMHOLTZ European **GEMEINSCHAFT XFEL** $\rho = \left[\frac{I}{\gamma^3 I_A} \frac{\lambda_u^2}{2\pi \sigma_x \sigma_y} \frac{(K \times [JJ])^2}{32\pi}\right]^{1/3}$ $\Delta z = \boldsymbol{R_{56}} \delta_p$ $\delta \approx 1\%$ $\xi = \frac{K^2}{2(2+K^2)}$

 $\Delta z = 0.18 \ cm \ (6 \ ps)$

 $R_{56} = 0.180 m$ Used to define geometry of the BC

Setup of the BC

1D Model for FELs

 $[JJ] = J_0(\xi) - J_1(\xi)$

Maximum relative energy spread for the

compression cases (δ) < $\rho \approx 1$ %

- Designed beam trajectory from hard edge model (modified from HERA dipoles)
- Vertical bending direction
- Bending angle : 19 deg.

• $R_{56} \approx -2\theta_0^2 \{ (L_{12} + \frac{2}{2}L_B) \} \rightarrow \sim 0.198 \text{ m}$ Concept → match R56 between beam and BC

PITZ

Beam transportation

Chicane magnet

w.r.t. sim

0

 $-2 \ \ ^{-2}_{\%} B_{\%}^{-2}$

-4

50

0

PITZ

Parameters

Applied current : 1 A Number of coil turns : 1332 turns per coil

1 V.s = 1 T.m^2

Export 3D magnetic field (dimensions)

Maximum magnetic field in x-direction (Bx) at (x, y) = (0,0) along z-direction : 0.04235 T

1.2

1.0

0.8 0

0.6

0.4

0.2

0.0

 B_x/B_x

Simulation

Measureme

-150

-100

 $z \,(\mathrm{mm})$

-50

Beam trajectory simulations

D1 = D3 and D2 = D4

- Average beam momentum : 17 MeV/c ٠
- Bunch charge : 250 pC ٠

After BC

1.20

2D scan current with the condition D1 = D4 and D2 = D3

Dispersion simulation for identical currents cases

 $D(z) = \frac{\langle x_{i,B}(z) \rangle - \langle x_{i,A}(z) \rangle}{|z|}$

Zero dispersion after chicane \rightarrow positive offset at chicane arm (between D2 and D3)

Symmetric currents method

HELMHOLTZ GEMEINSCHAFT

Beam pipe radius : 30 mm

Dispersion studies Independent currents method CHICANE.BPM1 CHICANE.SCR1 y = 334.5 mm20 0.4 HIGH2.SCR2 CHICANE.D2 CHICANE.D3 e----15 0.3 $\bar{y} = 0 \text{ mm}$ CHICANE.D1 CHICANE.D4 Collimator z = 18.6542 mz = 19.6258 mz = 21.1902 mz = 22.1618 m10 0.2 Dispersion (m) 0.1 offset (mm) 5 Vertical offset between D2 and D3 \leq 10 mm 0.0 0 Dispersion at HIGH2.SCR3 \leq 0.02 m -5 -0.1er BC Vertical angle at HIGH2.SCR3 ≤ 0.5 mrad -0.2-10-15-0.3Offset at HIGH2.Scr3 \leq 1 mm -20-0.419 20 22 23 24 18 21

Screen	Position(m)	D1(A)	D2(A)	D3(A)	D4(A)	Offset (mm)	Dispersion (m)
Chicane.BPM1	19.950					8.663	0.358
Center D2 and D3	20.408					9.431	0.358
Chicane.Scr1	20.671	1.163	1.159	1.163	1.163	9.500	0.356
HIGH2.BPM1	22.889					0.990	0.020
HIGH2.Scr3	23.450]				0.951	0.020

z(m)

0.5 m

z = 23.450 m

HIGH2.BPM1 HIGH2.SCR3

Dispersion measurements

- Beam momentum: ~17 MeV/c
- Bunch charge : 250 pC

Measurement parameters	Symmetric currents method (D1 = -D3, -D2 = D4)	Independent currents method (Fixed offset, scan D3 and D4 tuning)
Dispersion after chicane	~ 0.00 m	~ 0.03 m (minimum)
Beam angle after chicane	~ 7 mrad	~ 1 mrad
Beam offset chicane arm	~ 12 mm	~ 8.5 mm

Moving BC dipoles

For correcting dispersion

Move D2 and D3 downward \rightarrow corrected dispersion and beam transverse offset between D2 and D3 Move D1 and D4 upward \rightarrow corrected dispersion and beam transverse offset after D4

Moving BC dipoles

Independent currents method

Dispersion *before* moving dipole magnets in the vertical direction D1 = D4 = 0 mmD2 = D3 = 0 mm

Using method D1 = D4 and D2 = D3

D1, D2, D3, D4 = [-1.1714, 1.1693, 1.1693, -1.1714] A

Moving BC dipoles

Independent currents method

Dispersion *after* moving dipole magnets in the vertical direction D1 = D4 = + 6 mmD2 = D3 = -3.5 mm

Using method D1 = D4 and D2 = D3

D1, D2, D3, D4 = [-1.1560, 1.1552, 1.1552, -1.1560]

 10^{5}

 10^{4}

 10^{3}

10²

10

 10^{0}

10

 $4\pi^2 \Sigma_x \Sigma_y \Sigma_{x'} \Sigma_{y'}$ (mm² mrad²)

!!! No advantage to gain when $\sigma_r \gg \sigma_{x,y}$ and $\sigma_{r'} \gg \sigma_{x'y'}$

It is easier to achieve this condition for long wavelength

Electron limit

 10^{-1}

Finding optimum "beta"

Betatron function at the **source point**

Diffraction limit

$$\begin{aligned}
x' \\
\sigma_{b,x'y'}^2 &= \frac{\epsilon_{x,y}}{\beta_{x,y}} \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

 $\lambda_r = 100 \ \mu m$ THz

 $\epsilon_{ph,x,y} = 8 mm.mrad$

(Diffraction limited emittance)

Finding the optimum focusing for optimum matching

$$\sigma_{b,x,y}^2 = \epsilon_{x,y} \beta_{x,y}$$
 and $\sigma_{b,x'y'}^2 = \frac{\epsilon_{x,y}}{\beta_{x,y}}$

After including diffraction limit

$$\sigma_{tot,x}\sigma_{tot,x'} = \sqrt{\epsilon_x\beta_x + \sigma_r^2} \sqrt{\frac{\epsilon_x}{\beta_x} + \sigma_{r'}^2}$$

Beam transportation

Beam momentum 17 MeV/c Beam with chirp

Energy spread 0.6%

Bunch charge 250 pC

Matching parameters (transverse phase space)

- Twiss-parameters : β_x , β_y , α_x , α_y
- Transverse beam emittance : ϵ_x , ϵ_y

Challenges

- Only one quadrupole to focus beam after BC
- Increasing of the transverse emittance (vertical) after BC
- Strong space charge force field due to low energy electron beam, compressed beam, and high bunch charge (up to 1.5 nC for SASE)
- Match beam to small vertical pipe of an undulator magnet

Undulator chamber cross-section

HELMHOLTZ GEMEINSCHAFT

Edge focusing effect

Edge focusing effect

Magnetic field only $Bx \rightarrow `3DBNKF25X'$

- Average beam momentum : 17 MeV/c
- Bunch charge : 50 pC, 250 pC, 1.5 nC
- MMMG phase and ~ -20 deg. w.r.t. MMMG phase

Beam dynamics simulation using OCELOT

RMS size vs s

Beam from photocathode

Before BC at HIGH2.Scr2

6-D transportation matrix

 $\vec{\chi} = [x, x', y, y', z, \Delta p/p_0]^T$

- Average beam momentum : 17 MeV/c
- Bunch charge : 250 pC
- ~ -20 deg. w.r.t. MMMG phase

Motivation, Initial beam setup

0.388 - 0.166 = 0.221m

Finding Twiss-parameters before undulator magnet

PITZ

European

XFEL

HELMHOLTZ

GEMEINSCHAFT

DESY. PPS| Ekkachai Kongmon, 21 September 2023

Positions in simulation backward tracking

Page 28

Beam matching

Edge focusing effect

European XFEL

HELMHOLTZ

GEMEINSCHAFT

Backward tracking using OCELOT

Tracking to the end off the BC, switch x and y axis and tracking further to BC entrance

1st Iteration, HIGH3.Q3 = 1.3 T/m

Green color→ Vertical Black color→ Horizontal

 $X \leftrightarrow Y$

DESY. PPS| Ekkachai Kongmon, 21 September 2023

6

Forward tracking using OCELOT

Invert alpha (twiss-parameter), tracking beam the end of the undulator magnet

1st Iteration, HIGH3.Q3 = 1.3 T/m

Green color→ Vertical Black color→ Horizontal

 $X \leftrightarrow Y$

2nd Iteration

Forward tracking to the end of the undulator magnet (using beam from <u>S2E</u> simulation)

1st Iteration, HIGH3.Q3 = 1.3 T/m

2^{nd} Iteration, HIGH3.Q3 = 1.5 T/m

2nd Iteration

Forward tracking to the end of the undulator magnet (using beam from backward tracking)

1st Iteration, HIGH3.Q3 = 1.3 T/m

2nd Iteration, HIGH3.Q3 = 1.5 T/m

Achievement and Outlook

PITZ and my self

- Dispersion procedure
- Startup procedure for beam matching from BC to undulator magnet
- Beam dynamics in the BC
- Machine operation
- Simulation
- 1 LPR paper from IPAC23
- ... 1 paper from beam matching and super-radiant radiation

Next...

- Python script for beam matching (in October)
- MATLAB script for beam matching (in November)

Thank you for your attention