Status of orbit correction studies at PITZ

Dmytro Dmytriiev and Xiangkun Li 31.08.2023

HELMHOLTZ

Content

- Response matrix
- Transfer matrix
- Trajectory prediction
- Trajectory correction
- First experiments
- Development plans

Transfer matrix

Trajectory of the center of the beam from point A to point B

- Drift .
 - $R = \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix}$
- Quadrupole in thin lens approximation ۲
 - $R_x = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix}$
- 6D transfer matrix •

Courtesy: Maria Elena Castro Carballo, **ORBIT CORRECTION IN THE EUROPEAN XFEL, 31.03.2017** Example: FODO cell:

Courtesy: Wolfgang Hillert, Transverse Beam Dynamics, CAS 2018

Response matrix

Responses of the BPMs to the change of current of steerers before them

- The response of **i-th** BPM to the change of current of the **j-th** steerer
 - $H_{ij} = \Delta I_j \rightarrow \Delta x_i = \frac{\Delta x_i}{\Delta \theta_j} \rightarrow R_{12}$ of transfer matrix from steerer to BPM
- If there is only drift between the BPM and the steerer, then

•
$$R = \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \rightarrow R_{12} = L$$

• If there are also other non-steerer magnets (e.g., quadrupoles), then R₁₂ should be calculated using transfer matrix considering all m elements between them:

•
$$R = R_m R_{m-1} \dots R_1$$

Trajectory prediction

From change of currents to change of positions

- Workflow •
 - User defines a list of elements •
 - Get the number of steerers (M) and BPMs (N) and initiate the response matrix H [N x M] ٠
 - For each BPM (i<N), get each steerer (j<M) before it and calculate the H_{ii} ٠
 - Predict new positions of the beam at chosen BPMs (N) •
- Prediction •
 - Get strengths of steerers, k_{xx} , k_{yy} (we decided to calculate X and Y axis independently)
 - Get the changes of angles from the new currents of steerers: $\begin{bmatrix} \Delta \theta_x \\ \Delta \theta_y \end{bmatrix} = \begin{bmatrix} k_{xx} & k_{xy} \\ k_{yx} & k_{yy} \end{bmatrix} \begin{bmatrix} \Delta I_x \\ \Delta I_y \end{bmatrix}$
 - Calculate the new positions: $\Delta x = H\Delta\theta$

Trajectory correction

From desired change of positions to necessary change of currents

- Workflow
 - User defines a list of elements
 - Get the number of steerers (M) and BPMs (N) and initiate the response matrix H [N x M]
 - For each BPM (i<N), get each steerer (j<M) before it and calculate the H_{ii}
 - Do SVD for the response matrix: $H = U\Sigma V^T$ (needed for pseudo-opposite matrix to H)
 - Correct the current orbit at BPMs (N) by changing currents at steerers (M)
- Correction
 - Get strengths of steerers, k_{xx} , k_{yy} (we decided to calculate X and Y axis independently, k_{xy} and $k_{yx} = 0$)
 - Solve the angles: $\Delta \theta = V \Sigma^{-1} U^T \Delta x$

• Solve the currents of steerers:
$$\begin{bmatrix} \Delta I_x \\ \Delta I_y \end{bmatrix} = \begin{bmatrix} k_{xx} & k_{xy} \\ k_{yx} & k_{yy} \end{bmatrix}^{-1} \begin{bmatrix} \Delta \theta_x \\ \Delta \theta_y \end{bmatrix}$$

The idea of an experiment

- → High1.ST1, High1.STA1, High1.ST2, High1.STA2
 → Get the steerer strength in the steering plane.
- Define an orbit correction model (the above steerers + RFD.BPM1 & RFD.BPM2)

- Experimentally check the trajectory correction (e.g., center the beam at the BPMs)
 - Add quadrupoles to the model (High1.Q5, High1.Q6, High1.Q7)
- Robustness of the algorithm (e.g. does it work when the steerer strength estimated with an error?)

Robustness test

- User defines desired position **change** at chosen BPMs
- Needed currents changes are calculated for all steerers
- Position change is simulated based on the calculated currents change
- If the difference between desired position change and actual position change < tolerance, then break

Shift results (Xiangkun + Dima, 09.08.2023 afternoon)

Achievements

 Calibrated steerers with new script: HIGH1.ST1, HIGH1.ST2, HIGH1.ST3, HIGH1.ST4(shown on slide) HIGH1.STA1, HIGH1.STA2

Difficulties

- Several booster IL due to sparks with counter. Tests were conducted without booster.
- Orbit correction can have large error due to the beam jitter (at least at RFD.BPM1&2)

Meas Str 09082023	
RFDBPM1	RFDBPM2
29.69	31.11
27.13	26.56
11.67	11.41
56.69	55.79
11.45	11.24
28.99	28.29
	Meas Str RFDBPM1 29.69 27.13 11.67 56.69 11.45 28.99

Shift results (Xiangkun + Dima, 09.08.2023 afternoon)

• Tested orbit correction (High1.ST1&2 for x and High1.STA1&2 for y at both RFD.BPM1&2) and ran successfully.

Development plans

- Add quads to models and test (simulation+measurement)
- Steering free tuning of combination of quadrupoles
 - Response matrices with and without quads are **different**
 - When all quads are made steering free → response with and without quads will be **same**
- Test of the tool for different parts of the beamline
 - Low, High1, PST, THz matching/FLASH beam focusing
- Beautification of the code (separate classes for different routines)
- User Interface + understandable documentation

First simulation test to make quads steering free

- Idea
 - Response matrices with and without quads are different
 - When all quads are made steering free
 → response with and without quads will be same
 - By minimizing the difference (e.g., simplex method), the trajectory inside the quads can be optimized

- Test
 - Upper, tuning with two quads (perfect case)