# Numerical study of beam dynamics in PITZ BC for beam matching into the undulator magnet

### **PITZ Physics Seminar (PPS)**



Ekkachai Kongmon

**PITZ**, 27 July 2023



HELMHOLTZ

### **Beam matching to BC and Undulator Magnet**









#### Challenges

•

- Only one quadrupole to focus beam after BC
- Increasing of the transverse emittance (vertical) after BC
- Match beam to small vertical pipe of an undulator magnet



Undulator chamber cross-section

- Matching parameters (transverse phase space)
- Twiss-parameters :  $\beta_x$ ,  $\beta_y$ ,  $\alpha_x$ ,  $\alpha_y$
- Transverse beam emittance :  $\epsilon_x$ ,  $\epsilon_y$

### **Beam matching to BC and Undulator Magnet**



#### Matching parameters (transverse phase space)

- Twiss-parameters :  $\beta_x$ ,  $\beta_y$ ,  $\alpha_x$ ,  $\alpha_y$
- Transverse beam emittance :  $\epsilon_x$ ,  $\epsilon_y$

### **Beam matching to undulator**

### **Forward tracking**



#### **Simulation setup**

- Using ASTRA + 3D magnetic field of undulator magnet
- Optimized parameters
- Beam momentum 17 MeV/c, Bunch charge 250 pC
  - Transverse beam size  $F_x = |\sigma_{xf} \sigma_{xi}| \rightarrow 0$   $F_y = |\sigma_{yf} \sigma_{yi}| \rightarrow 0$

• Correlation

$$\sigma_x^2 = \frac{\beta_x \epsilon_{n,x}}{\beta \gamma}$$

$$cor_{px} = -\frac{\alpha_x}{\beta_x[m]}\sigma_x[mm]$$

Fixed transverse emittance !

Norm. emit\_x, Norm. emit\_y = 1, 1 mm.mrad





### **Beam matching to undulator**

### **Backward tracking**

Invert the lattice Invert alphas







#### Solving these problems

- 1. Horizontal focusing
- 2. Space charge dominated
- 3. Effect CSR next step

#### Input beam properties

Meam momentum : 17 MeV/c Phase : -20 deg. w.r.t. MMMG Bunch charge : 250 pC Norm. emittance : 1 mm.mrad



### Setup BC (Chicane) → beam dynamics



#### Lattice for BC



### **Beam dynamics simulation**

#### Input beam properties

Meam momentum : 17 MeV/c

Phase : -20 deg. w.r.t. MMMG ~ 0.6%

energy spread

Bunch charge : 250 pC

Norm. emittance : 1 mm.mrad





### **Beam dynamics simulation**

#### Input beam properties

Meam momentum : 17 MeV/c

Phase : -20 deg. w.r.t. MMMG ~ 0.6%

energy spread

Bunch charge : 250 pC

Norm. emittance : 1 mm.mrad





### **Conclusion and Outlook**



#### Requirements beam properties (in this procedure)

• Beam must be focused from h2s3 to h3s1

#### Difficulty

• Emittance x and y are increasing after BC, which is the main issue of increasing the transverse beam size.

#### How to dealing with the problem!

- Increasing Twiss-parameters  $(\beta_x, \beta_y, \alpha_x, \alpha_y)$  before BC at h2s2
  - o **Issue**  $\rightarrow$  Can't match the beam to provide the desired beam properties at h2s2.
- Finding the new matching parameters from undulator entrance
  - Increasing transverse emittance

#### More option

Relaxing the compression after BC



0.66

### **Conclusion and Outlook**

## Thank you for your attention