Correcting the beam transverse offset and the dispersion for the BC by moving dipole magnets

PITZ physics seminars 2023
Ekkachai Kongmon
8 June 2023

HELMHOLTZ

HELMHOLTZ
| GEMEINSCHAFT
European
XFEL

BC commissioning

Dispersion measurements

Measurement parameters	Symmetric currents method (D1 = -D3, -D2 = D4)	Independent currents method (Fixed offset, scan D3 and D4 tuning)
Dispersion after chicane	$\sim 0.00 \mathrm{~m}$	$\sim 0.03 \mathrm{~m}$ (minimum)
Beam angle after chicane	$\sim 7 \mathrm{mrad}$	$\sim 1 \mathrm{mrad}$
Beam offset chicane arm	$\sim 12 \mathrm{~mm}$	$\sim 8.5 \mathrm{~mm}$

BC simulations and beam matching

Motivation and objective

Requirement beam quality from BC

1. Zero dispersion
2. Zero beam offset
3. Zero angle after chicane

Reduce degrees of freedom

Can use identical currents for all dipoles to transport electron beam

$$
\begin{gathered}
\left\langle x_{i}^{2}\right\rangle=\epsilon \beta \\
\left\langle x_{i}^{\prime 2}\right\rangle=\epsilon \gamma \\
\left\langle x_{i} x_{i}^{\prime}\right\rangle=-\epsilon \alpha
\end{gathered}
$$

e.g., 250 pC
$\epsilon_{n, x, y}=1 \mathrm{~mm} . \mathrm{mrad}$

BC simulations

Objective

After bunch compressor

1. Zero dispersion
2. Zero beam offset
3. Zero angle

- Beam momentum : $17 \mathrm{MeV} / \mathrm{c}$
- Particle tracking without space charge effect using ASTRA
- 3D magnetic field from CST EM studio including fringe field was implemented in the simulation.
- 4D scan of the dipole currents.

Between D2 and D3

1. Constant dispersion
2. Zero beam offset or close to center of pipe \rightarrow high charge beam transportation

HELMHOLTZ

Beam trajectory simulations

Dispersion simulation for identical currents cases

After BC

\rightarrow Zero dispersion after BC
\rightarrow Negative beam offset and angle

Between D2 and D3

\rightarrow Positive beam offset $\sim 11 \mathrm{~mm}$

Beam trajectory simulations

Moving by -9 mm downwards for D2 and D3 in the vertical direction w.r.t. center pipe

After BC
\rightarrow Zero dispersion after BC
\rightarrow Negative beam offset and angle
Between D2 and D3
\rightarrow Positive beam offset $\sim 1 \mathrm{~mm}$

Maximum for D2 and D3 \rightarrow ~ 4 mm downward

Beam trajectory simulations

HELMHOLTZ

After BC

\rightarrow Zero dispersion after BC
\rightarrow Negative beam offset and angle

Between D2 and D3

$$
\rightarrow \text { Positive beam offset } \sim 7 \mathrm{~mm}
$$

Moving D1 and D4 in vertical direction

Beam trajectory simulations

|D1| and |D4|-15 mm
Wrong direction !!!!!!

Beam trajectory simulations

|D1| and |D4| +5 mm

HELMHOLTZ
| GEMEINSCHAFT
European XFEL

After BC

\rightarrow Zero dispersion after BC
\rightarrow Negative beam offset and angle

Between D2 and D3

\rightarrow Positive beam offset $\sim 11 \mathrm{~mm}$

Beam trajectory simulations

|D1| and |D4| +15 mm

After BC

\rightarrow Zero dispersion after BC
\rightarrow Negative beam offset and angle

Between D2 and D3

Moving all dipoles in the vertical direction

Move D2 and D3 downward \rightarrow corrected dispersion and beam transverse offset between D2 and D3 Move D1 and D4 upward \rightarrow corrected dispersion and beam transverse offset after D4

Beam trajectory simulations

|D2| = |D3| = -4 mm and |D1| = |D4| +15

HELMHOLTZ

After BC

\rightarrow Zero dispersion after BC
\rightarrow Negative beam offset and angle

Between D2 and D3

\rightarrow Positive beam offset 5 mm

Beam trajectory simulations
|D2| = |D3| = -5 mm and |D1| = |D4| +15

HELMHOLTZ

After BC

\rightarrow Zero dispersion after BC
\rightarrow Negative beam offset and angle

Between D2 and D3

\rightarrow Positive beam offset 5 mm

HELMHOLTZ |GEMEINSCHAFT

Vertical offset w.r.t. center of pipe (mm)				After BC		Between D2 and D3
D1	D2	D3	D4	Dispersion (m)	Offset (mm)	Offset (mm)
0	0	0	0	0	-3 (negative divergence)	$\sim 11 \mathrm{~mm}$
0	-9	-9	0	0	-3 (negative divergence)	$\sim 1 \mathrm{~mm}$
0	-4	-4	0	0	-3 (negative divergence)	$\sim 7 \mathrm{~mm}$
+5	0	0	+5	0	-2 (small negative divergence)	$\sim 11 \mathrm{~mm}$
+15	0	0	+15	0	-1 (small negative divergence)	$\sim 11 \mathrm{~mm}$
+15	-4	-4	+15	0	-1 (small negative divergence)	$\sim 5 \mathrm{~mm}$

1. Move D2 and D3 downward \rightarrow corrected dispersion and beam transverse offset between D2 and D3
2. Move D1 and D4 upward \rightarrow corrected dispersion and beam transverse offset after D4
