Beam Dynamics Simulation and Optimization of an Electron Beam for Magnetic Bunch Compressor Commissioning at PITZ

PPS 16 March 2023

Ekkachai Kongmon

PITZ , 16 March 2023

HELMHOLTZ

Outline of the presentation

Introduction

- Bunch compressor
- PITZ accelerator
- PITZ Bunch Compressor
 - \circ 1D Models for FELs
 - o Designed trajectory

Beam trajectory simulation

- Set up simulation
- Optimization of magnetic chicane current

Beam dynamics simulation

Using the optimized case from trajectory

Summary and Future work

Bunch Compressor

Bunch compression in magnetic chicane

PITZ Accelerator

PITZ Bunch compressor

~34 m

Production and optimization of the high brighness THz radiation, called free-electron laser (FEL)

- SASE (bunch length longer 5 ps \rightarrow peak current 200 400 A for 2 4 nC)
- Seeded
- Super-radiant

FLASH beamline for biology application

• Irradiation biology

PITZ Bunch Compressor

$[JJ] = J_0(\xi) - J_1(\xi)$

1D Model for FELs

Specifications	Details					
LCLS-I undulator						
Туре	planar hybrid (NdFeB)					
K-value	3.585 (3.49)					
Support diameter / length	30 cm / 3.4 m					
Vacuum chamber size	11 mm x 5 mm					
Period length (λ_u)	30 mm					
Periods / a module	113 periods					
e-beam						
Beam momentum	17 – 22 MeV/c					
Transvers rms beam size (σ_x, σ_y) (Gaussian beam)	1 mm					
e-beam peak current (I)	200 A					
Bunch charge	4 nC					
Radiation						
Radiation wave length	~100 µm (~ 17 MeV/c)					

Pirece parameter

$$\rho = \left[\frac{I}{\gamma^3 I_A} \frac{\lambda_u^2}{2\pi\sigma_x \sigma_y} \frac{(K \times [JJ])^2}{32\pi}\right]^{1/3}$$

 $\xi = \frac{K^2}{2(2+K^2)}$

Beam requirements

- 1. Electron beam relative energy spread (δ) should be smaller than Pirece parameter (ρ)
- 2. Geometric emittance of an electro beam (ε_{\perp}) should be smaller than radiation emittance (ε_r), $\varepsilon_r = \lambda_r / 4\pi$

ho = 0.015 for 17 MeV/c = 0.013 for 22 MeV/c

Maximum relative energy spread (δ) < $\rho \approx 1 \%$

PITZ Bunch Compressor

Designed beam trajectory from hard edge model

Parameters	Value
Beding angle	19 degrees
Bending radius	904.67 mm
Distance D1 \rightarrow D2 (L ₁₂)	680 mm
Pole length (L _B)	300 mm

HELMHOLTZ

GEMEINSCHAFT

 $R_{56} \approx -2\theta_0^2 \{ (L_{12} + \frac{2}{3}L_B) \}$ $R_{56} \approx 0.198 m$

PITZ

European

PITZ Bunch Compressor

Dispersion function of the hard edge dipole

Dispersion function	$S_0 \rightarrow S_1$	$S_1 \rightarrow S_2$
<i>D</i> ₁	0	$R(1-\cos(\frac{s-s_1}{R}))$
D'_1	0	$sin(\frac{s-s_1}{R})$

1 st dipole D_1 and D'_1

2 Drift space
$$D_2 = D_1 + \lambda D'_1$$
, $D'_2 = D'_1$
3 2^{nd} dipole $D_3 = D_2 - D_1$, $D'_3 = D'_2 - D'_1 = 0$
4 Drift space $D' = 0$
5 3^{rd} dipole $D_4 = D_3 - D_1$, $D'_4 = -D'_1$
6 Drift space $D_5 = D_4 + \lambda D'_4 = -D_1$, $D'_5 = D'_4 = -D'_1$
7 4^{th} dipole $D_6 = D_5 + D_1 = 0$, $D'_6 = D'_5 + D'_1 = 0$

Simulation of an electron beam for trajectory tool development of the magnetic Bunch Compressor (BC)

To find the optimum current of all dipole magnets for electron beam transportation throughout the BC.

- For high charge transportation.
- For compression phase.
- Vertical offset from the center of vacuum tube.
- Dispersion (R₃₆)

Beam Trajectory Simulation

Initial parameters and set up

Beam Trajectory Simulation

Dispersion function for identical currents cases

Beam momentum : 17 MeV/c

Beam Trajectory Simulation

Minimization with the 1 mA step of the dipole currents

Goal parameters	Value
Dispersion at HIGH2.SCR3	\leq 0.02 m
Offset at HIGH2.SCR3	\leq 1 mm
Vertical angle at HIGH2.ScCR3	\leq 0.5 mrad
Vertical offset D2 and D3	≤10 mm

Vacuum tube between Dipole2 and Dipole3 is NW63CF type, which has the inner radius of 30 mm.

Screen	Position(m)	D1(A)	D2(A)	D3(A)	D4(A)	Offset (mm)	Dispersion (m)
Chicane.BPM1	19.950					8.663	0.358
Center D2 and D3	20.408					9.431	0.358
Chicane.Scr1	20.671	1.163	63 1.159	1.163	1.163	9.500	0.356
HIGH2.BPM1	22.889					0.990	0.020
HIGH2.Scr3	23.450					0.951	0.020

Beam dynamics simulations

Bunch charge : 200 pC, Including space charge force field.

Beam before chicane (HIGH2.SCR2)

* Using minimum momentum spread phase

Beam after chicane (HIGH2.SCR3)

Beam dynamics simulations

Using optimum phase for electron beam compression

HELMHOLTZ

GEMEINSCHAFT

Beam after chicane (HIGH2.SCR3)

Peak currents Before : 53.066 A After :265.148 A

European

XFEL

* In experiment the full compression phase can be measured by measuring the radiated energy from CTR.

PITZ

Summary and Discussion

- To reach the minimum dispersion after chicane, we can't transport the beam along the on-axis (designed) trajectory.
- 2. Maximize parameters \rightarrow to find the optimum currents for all dipoles
 - $\circ~$ At the arm of chicane : Chicane.BPM1, Chicane.Scr1
 - \rightarrow Vertical offset = + 10 mm.
 - After chicane: HIGH2.BPM1, HIGH2.Scr3
 - \rightarrow Vertical offset = |1 |mm
 - \rightarrow Vertical angle = 1 mrad
 - \rightarrow Dispersion = 0.02 m

Future works

- 1. Using the optimization method to transport electron beam with the compression phase and high charge.
 - Booster phases : 0, -5, -10, -15, -20, -25 degrees.
 - Bunch charge : 50, 200, 500, 1000, 2000, 4000 pC.
- 2. Including the CSR effect for high bunch charge beam transportation (> 200 pC).
- 3. Study compression conditions for SASE, seeded, super radiant FELs techniques.
- 4. Beam matching
 - Booster to chicane
 - Chicane to undulator
- 5. Study on THz FEL production by including magnetic bunch compressor to the process.

Thank you for your attention