Software for the beambased alignment of a RF-Photogun

Chris Marvin Zibula
B-TU Cottbus-Senftenberg

Motivation

- To accelerate the electrons ideally the laser pulse position on the cathode and the solenoid are aligned
- To approach a perfect alignment, misalignments must be quantified and corrected for. A method is proposed using the positions of the electrons on the YAG screen of the photogun, measured as a function of the magnetic field strength B in the solenoid

- The tighter the points to each other, the better the alignment
- Based on those measurements, misalignment can be simulated

Electromagnetic Fields of the Photogun
 - Electric Field inside the Gun-Cavity is described by:

$$
\begin{aligned}
& E_{Z}(Z, t)=E_{0} \cdot E_{z, n o r m} \cdot \sin \left(\omega t+\varphi_{0}\right) \\
& E_{0} \quad-\text { Amplitude of the electric field } \sim 60 \mathrm{MV} / \mathrm{m} \\
& E_{z, n o r m} \text { - Normalized field distribution of the cathode } \\
& \omega \quad \text { - Angular frequency of the standing wave } \\
& \varphi_{0} \quad \text { - Phase of the wave at release of electrons }
\end{aligned}
$$

- Magnetic Field of the Solenoid is described by:

$$
\begin{array}{ll}
B_{Z}(z) & =B_{\max } \cdot B_{Z, \text { norm }}(z) \\
B_{\max } & \text { - maximum field strength } \sim 0.2 T \\
B_{z, \text { norm }} & \text { - for maximum normalized field } \\
& \text { distribution }
\end{array}
$$

- With z being the axis along the electrons motion

Field distributions

Equations of motion

- The force equation of the motion of an electron:

$$
\frac{d \vec{P}}{d t}=\overrightarrow{F_{L}}=\overrightarrow{F_{E}}+\overrightarrow{F_{B}}
$$

- The velocity:

$$
\frac{d \vec{x}}{d t}=\vec{v}
$$

- With: t

$$
\begin{array}{ll}
\vec{P}=\gamma m \vec{v} & - \text { momentum } \\
\overrightarrow{F_{L}} & \text { - Lorentz force } \\
\overrightarrow{F_{E}}=e \vec{E} & \text { - force by the electric field } \\
\overrightarrow{F_{B}}=e \vec{v} \times \vec{B} & \text { - force by the magnetic field } \\
\vec{x} & \text { - position } \\
\vec{v} & \text { - velocity } \\
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} & \text { - Lorentz factor }
\end{array}
$$

Equations of motion

- Using $\vec{\beta}=\frac{\vec{v}}{c}$ yields:

$$
\begin{aligned}
\frac{d}{d t} \frac{m \vec{v}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} & e \cdot \vec{E}+e \vec{v} \times \vec{B} \\
\frac{d}{d t} \gamma \vec{\beta} & =\frac{e}{m c} \vec{E}+\frac{e}{m} \vec{\beta} \times \vec{B}
\end{aligned}
$$

- That results into the 6 -dimensional differential equation system:

$$
\begin{aligned}
& \frac{d}{d \tau} \vec{p}=\frac{e}{m \omega c} \vec{E}+\frac{e}{m \omega} \frac{\vec{p}}{\sqrt{1+p^{2}}} \times \vec{B} \\
& \frac{d}{d \tau} \vec{\chi}=\frac{\vec{p}}{\sqrt{1+p^{2}}}
\end{aligned}
$$

- With: $\tau=\omega t$
- dimensionless time

$$
\begin{array}{ll}
\vec{\beta}=\frac{v}{c}=\frac{\vec{p}}{\sqrt{1+p^{2}}} & \text { - dimensionless velocity } \\
\vec{p}=\vec{\beta} \gamma & \text { - dimensionless momentum } \\
\vec{\chi}=\vec{x} \frac{\omega}{c} & \text { - dimensionless position }
\end{array}
$$

Numerical solution

- $4^{\text {th }}$ order Runge-Kutta algorithm
- Time is discretized into N intervals per period \rightarrow every time step is $\Delta \tau=\frac{2 \pi}{N}$ long
- The system of differential equation is defined as \vec{F} and its solution as \vec{Y} such as:

$$
\begin{gathered}
\vec{Y}(\tau)=\binom{\vec{p}}{\vec{\chi}} \\
\frac{d}{d \tau} \vec{Y}(\tau)=\vec{F}(\tau, \vec{Y})=\binom{\frac{e}{m \omega c} \vec{E}(\tau, \vec{Y})+\frac{e}{m \omega} \frac{\vec{p}}{\sqrt{1+p^{2}}} \times \vec{B}(\tau, \vec{Y})}{\frac{\vec{p}}{\sqrt{1+p^{2}}}}
\end{gathered}
$$

Numerical solution

- With the starting conditions

$$
\vec{Y}(\tau=0)=\binom{\overrightarrow{p_{0}}}{\overrightarrow{\chi_{0}}}, \quad \text { with } \overrightarrow{p_{0}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { and } \overrightarrow{\chi_{0}}=\left(\begin{array}{c}
\chi_{x, 0} \\
\chi_{y, 0} \\
0
\end{array}\right)
$$

- χ_{0} is where the laser hits the cathode
- For the $(\mathrm{n}+1)$-st step there are the following temporary solutions:

$$
\begin{aligned}
& \vec{K}_{n, 1}=\Delta \tau \cdot \vec{F}\left(\tau_{n}, \vec{Y}_{n}\right) \\
& \vec{K}_{n, 2}=\Delta \tau \cdot \vec{F}\left(\tau_{n}+\frac{\Delta \tau}{2}, \vec{Y}_{n}+\frac{\vec{K}_{n, 1}}{2}\right) \\
& \vec{K}_{n, 3}=\Delta \tau \cdot \vec{F}\left(\tau_{n}+\frac{\Delta \tau}{2}, \vec{Y}_{n}+\frac{\mathbb{K}_{n, 2}}{2}\right) \\
& \vec{K}_{n, 4}=\Delta \tau \cdot \vec{F}\left(\tau_{n}+\Delta \tau, \vec{Y}_{n}+\vec{K}_{n, 4}\right)
\end{aligned}
$$

- Which will be added to the previous solution \vec{Y}_{n} as follows:

$$
\vec{Y}_{n+1}=\vec{Y}_{n}+\frac{\overrightarrow{K_{n, 1}}}{6}+\frac{\overrightarrow{K_{n, 2}}}{3}+\frac{\overrightarrow{K_{n, 3}}}{3}+\frac{\overrightarrow{K_{n, 4}}}{6}
$$

Coding of the simulation

- The simulation is coded with MATLAB
- Three classes have been made:
- The fields of the RF-Gun
- The magnetic field of the solenoid
- The tracker which is simulating the path of one electron
- The tracker uses one object of each class to calculate the momentum and location of the electron

Class of the RF-Gun

```
classdef RF_Field < handle
    properties
        filename % filename of field distribution
        c = 299792458 % lightspeed m/s
        f=1.3e9 % 1.3GHz
        k % wavenumber
        z % z-values of field distribution
        zeta % dim-less z-values
        phi0 % startingphase
        E0 % amplitude of the electric field
        Ez_norm % normed field distribution
        Ez_1dif % 1st differentiation of normed field
        Ez_2dif % 2nd diff
        Ez_3dif % 3rd diff
    end
    methods
        function obj = RF_Field(E_filename, E_0) % constructor ....
        function obj = setE0(obj, E_0) % setting amplitude....
        function obj = setPhi0(obj, phi0_degrees) % set starting phase...
        function deriv = GetDeriv(obj,Fz,z) % derivation method ... 
        function [E,B] = getField(obj,xk,yk,zk,tau) % return E,B fields of the RF-Gun at a certain point ... 
        function plot2DField(obj,Fignumber) % plotting 2D E-field
        function plot1DField(obj, Fignumber, Ez_or_Er, r_z_in_m) % plotting either B_z or B_r at certain r or z
    end
end
```


Class of the solenoid-field

classdef Sol_Field < handle
properties

```
        main_filename
            % filename of field distribution
        buck
        c = 299792458 % lightspeed m/s
        f = 1.3e9 % 1.3GHz
        k % wavenumber
        B0 % maximum field strenght
        z % z-values of field distribution
        zeta % dim-less z-values
        Bz_norm % normed field distribution
        Bz_1dif % 1st diffrerentiation of B-field
        Bz_2dif % 2nd diff
        Bz_3dif % 3rd diff
        xk sol off = 0
        yk_sol_off = 0
        zk_sol_off = 0 % dim-less x,y,z-alignment of solenoid
        pitch_deg = 0
        yaw_deg = 0 % pitch,yaw of solenoid
        B_const_T % values of a constant magnetic field
```

 end
 methods
 function obj \(=\) Sol_Field(mainfilename, B_0) \% constructor
 function obj \(=\) setB0(obj, B_0) \(\quad \%\) setting B0 \(\ldots\)
 function obj = setSolPlacem(obj,x_mm,y_mm,z_mm,pitch_degrees,yaw_degrees) \% setting solenoid alignment
 function deriv \(=\) GetDeriv(obj,Fz,z) \% derivation method...
 function \(B=\) getField(obj, \(x k, y k, z k) \quad \%\) return \(B\)-field at a certain point
 \qquad
function plot1DField(obj, Fignumber, Bz_or_Br, r_z_in_m) \% plotting either B_z or B_r at certain r or z...
function plot2DField(obj, Fignumber) \% plotting the 2 dimensional field ...
function obj = set_B_const(obj, Bx_uT, By_uT, Bz_uT) \% setting constant a magnetic field....
end
end

Class of the particle tracker

```
classdef PartTracker < handle
    properties
```



```
        f=1.3e9 & % . 3GHz
        c=-1.602e-19 % elementry charge C= A*s
        m}=9.109\textrm{e}-31\quad\mathrm{ & electron mas3
        k % wavenumber
        RFField % %F-Field object
        Solfield % Solenoid-Field object
        PartTrack noral % Tracked particle in normed units
        PartTrack unit & Tracked particle in SI-units
        X(1,2,3):P_(x,y,z) | (4,5,6):x,y,2 | (7):time
        z_end = 0.803 X in E | default end of tracking
        zeta_end % dimesionless end of the tracking
        steps = 100 % time steps per Period
        laser x_off mm=e 
```



```
    end
    methods
    function obj = PartTracker(RF_Field,Sol_Field) X constructor with RF- and Sol-Field objects mom
    function obj = setSteps(obj, Steps_default_100) * setting steps per period +**
    function obj = setsolField(obj, Sol Field) }\quad*\mathrm{ setting new solenoid field object 
    function obj = setz_end(obj, z_End_n) % setting end of tracking....
    furction obj = setoffset(obj,x_off_mm, y_off_nm)% setting starting position ....
    function obj = Tracking(obj)
    function Y = Track_sim(obj) % simulation of particle (used For Tracking(obj) method) \ldots...
    function Y = GetTrack(obj) X returns tracked particle (PartTrack_unit) mon
    function Y = GetEndState(obj) X. returns last entries of PartTrack_unitt....
    function F=GetRightside{obj,Y,tau) % used for RKG in Track_sin(obj) [...
    function F = GetFonce(obj)
    * used for plot_Overview ....
    function plot_Overview(obj,Fignumber)
    * plotting an Overview of the result of the simulation.... 
```

Ffunction $x=$ Screen_for_alignment(obj, I_vec, Input) \quad I returns ending postions for different solenoid currents (I_vec) +

Results: 1D-dynamic

- Calculated for different φ_{0} and E_{0} yields:

$$
E_{z}(z, t)=E_{0} \cdot E_{z, n o r m} \cdot \sin \left(\omega t+\varphi_{0}\right)
$$

für verschiedene Statphasen; mit $E_{0}=30 \mathrm{MeV} / \mathrm{c}$
für verschiedene Statphasen; mit $\mathrm{E}_{0}=60 \mathrm{MeV} / \mathrm{c}$

'Exotic' Phases

- Phases around 110 to 125 degrees (depending on gradient E_{0})

- Shown here for $E_{0}=30 \frac{\mathrm{MV}}{\mathrm{m}}$:

Convergence and computing-time

- Investigation of the stability and convergence of the algorithm for different φ_{0} :

Comparison with ASTRA:

final momentum vs launch phase

- Momentum at the end of the simulation depending on φ_{0}
- Ideal alignment:
- electron was released on the RF-Gun axis
- the solenoid axis is on and parallel towards the RF-Gun axis

Endimpuls über Startphase
mit $E_{0}=30,9 \mathrm{MV} / \mathrm{m}$

- Average difference is 0.002%

Comparison with ASTRA: final position

- Laser does not hit the cathode in the middle
- Without field of the solenoid
- Position at the end of simulation depending on φ_{0} for two different starting positions

Endposition über Startphase
mit Laser Offset in $\times 1 \mathrm{~mm}$, bei $\mathrm{E}_{0}=30,9 \mathrm{MVIm}$

- Average difference is 0.091%

Comparison with ASTRA: final position with solenoid field

- Simulating the ending position depending on the magnetic field strength
- The solenoid is perfectly aligned
- The laser hits the cathode with an offset of $(x, y)=(1 \mathrm{~mm},-0.5 \mathrm{~mm})$

Endposition mit Solenoidfeld

- Average difference is 0.12%

Comparison with ASTRA: final position with solenoid field

- Laser is perfectly aligned

- Average difference is 0.2%

Comparison with ASTRA: final position with solenoid field

- Laser has an offset of $(x, y)=(1 \mathrm{~mm},-0.5 \mathrm{~mm})$
- Solenoid has an offset of $(x, y)=(1 \mathrm{~mm},-0.5 \mathrm{~mm})$

- Average difference is 0.3%

Fit to a measurement

- measured momentum compared to corresponding simulated momentum vs starting phase
- Measured with LEDA
- $E_{0}=31.5 \frac{M V}{m}$ fits best

Software of the beam-based alignment

- A given measurement of final positions \vec{x}_{M}^{\prime} depending on the solenoid current $I_{\text {main }}$ is compared to a simulated set of final positions \vec{x}_{S} with a certain alignment vector \vec{A} (laser spot-offset, solenoid-offset, solenoid-pitch and yaw, constant magnetic field)
- The magnetic field strength is given by:

$$
B_{0}=I_{\text {main }} \cdot 5.871 \cdot 10^{-4} \frac{T}{A}
$$

- The center of the monitor for the measurementis not aligned to the axis, hence a monitor offset has to be calculated by:

$$
\vec{x}_{o f f}=\frac{1}{\sum w_{i}} \sum_{i=1}^{N} \vec{w}_{i}\left(\vec{x}_{M, i}-\vec{x}_{S, i}\right),
$$

- with \vec{w}_{i} being a weight of a certain measured point i
- That offset will be used to adjust the monitor on the axis by:

$$
\overrightarrow{\vec{x}}_{M}=\vec{x}_{M}^{\prime}-\vec{x}_{o f f}
$$

Software of the beam-based alignment

- To find the alignment vector \vec{A} a goal function $F(\vec{A})$ is minimized:

$$
F(\vec{A})=\sum_{i=1}^{N}\left\{w_{x, i}\left(x_{M, i}-x_{S, i}(\vec{A})\right)^{2}+w_{y, i}\left(y_{M, i}-y_{S, i}(\vec{A})\right)^{2}\right\}
$$

- The weight \vec{w}_{i} of a certain measured point i reads:

$$
w_{x, i}=\exp \left(-\frac{\epsilon_{x, i}^{2}}{2 \sigma_{x}^{2}}\right) \quad \text { and } w_{y, i}=\exp \left(-\frac{\epsilon_{y, i}^{2}}{2 \sigma_{y}^{2}}\right)
$$

- With ϵ_{i} being the statistical error of a single measurement and σ being the root mean square of all measured errors
- The minimization of the goal function is done by the MATLAB function fminsearch which minimizes a multivariable function via the Downhill-Simplex-method and gives back the coordinates of the calculated minimum

Normalization

- To equal the impact of each alignment variable on the goal function value, each variable is normalized
- That normalization was determined by the impact on the monitor measurement

- 0.5 mm laser or solenoid offset lead to same beam misalignment as 0.05° solenoid angle

Structure of the software: Input

- Software starts by choosing the file with the measured data points which has to include the solenoid current, and the positions at the screen with statistical errors
- Those measurements may look as follows:

- For better accuracy there is an option to chose multiple measurements with a known difference in the alignment

Structure of the software: Input

- Then the gradient and the phase of the measurement has to be set

- The free choice of optimisation variables

Structure of the software:

Input

- The alignment at the start of the minimization can be read from a file, e.g. the last measurement performed, or inserted manually

- Finally the maximum number of minimization iterations for fminsearch has to be set

Structure of the software:

 optimization algorithm- Afterwards 10 , based on starting positions, randomized alignments are simulated, results are shown on the console
- The best of those is being used as a start for the minimization process (to build an initial simplex)
- During the minimization the last simulated alignment is being shown

Command Winsow

-.-. Faraneters of ourrent randonized alligment the ourrenc allignment of the f1rst measurement: K, Y Laser offast min 0.2704 0,94412 $k_{1} y$ Solenold ottset rmi -0.20178 1.1471 pitem, ynw of solenosd deg: 0.033029 -0.07asel $\mathrm{x}, \mathrm{y}, \mathrm{z}$ conse magnetsc $\mathrm{ti=1d} \mathrm{maT}:-69,1956 \quad-6,17955$ Fon 1 Panetien r - 133.4412
-.-. Daraneterz of earranh randemizad alligument:
the curzent, allignant of the firat meavazement:
x, y Laser offere m: 0.3956
x, y Solenold orfser me: $-0,381036$
itch, yaw of Solenoid degr $0.057567 \quad 0.5495$
$x_{i} y_{i} z$ oonst magnebio field wirl $-33.345 \quad-42.9224$ Foal Funotion $F=41.9199$
-..- Paranetery of oxirent randsmized allignment
the current nilignnent of the first mesmaremeat:
x, y Laver Oftove min: 0,40215
x, y Solenoxd offnet mi: -0,61134 $\quad 1,5$
fitch, you of Solenosd teg: $\mathrm{E} .064506-0.22355 \mathrm{~s}$
 Coal Runetion $F=66.5716$

Command Window

the current allignment of the first neasurenenti x, y Laser Offset mm: 0.33053 0.083264 x, y Solenold Offaet mar $0.09972 \mathrm{E} \quad-6.57560$ pitch, yax of Solenoid sleg: $-0.017153 \quad 0.0024773$
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ conat magnetie field maT: 25.3729 : $\quad-11.9554$
Goal Function $\bar{z}=3,7251$
the current allignuent of the first neasurement: x, γ Laser offset $\mathrm{mm}: ~ 0.33033 \quad 0.065264$
x, y Solenoid offnet min! $0.091353 \quad-0.5197$
pltoh, yaw of Solenoid deg: $-0.017597 \quad 0.0038975$
$\mathrm{x}, \mathrm{y}, \mathbf{z}$ conat magnetic fle1d muT: $25.3729 \quad-11.9554$
Goal Function F = 7.4137
the current allignment of the firgr measurement
x, y Laser Offset $\mathrm{mm} \quad 0.33053 \quad 0.058264$
x, y Solenoid Offget mit 0.091802 -0.5182
pltch, yax of Solenoid deg: $-0.017551 \quad 0.0015001$
x, y, z conat magnetic field maT: $25.3729 \quad-11.9554$
6.70216

Gosl Function $Y=6.9134$

Structure of the software: results

- After a minimization cycle there is the option to save the simulated alignment in a .txt file

- Finally there is the option to start another cycle of minimization using a different selection of alignment variables to be minimised

Example for Application

- Three measurements
- In the second one the solenoid is moved by -0.5 mm in y-direction compared to the first
- In the third one the solenoid is moved by +1 mm in x-direction compared to the first
- After the randomly simulated alignments the best one is:

the current allignment of the first measurement
x, y Laser Offset mm: 0.021136 -0.26841
x, y Solenoid Offset mm: $0.9889 \quad 0.12406$
pitch,yaw of Solenoid deg: $0.014331-0.0083588$
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ const magnetic field muT: $-13.2563 \quad 48.7982 \quad-46.2261$
Goal Function $F=43.2754$
goal function $=13.7901$ monitor $x_{\text {of }}$ in $\mathrm{mm}=-22.3617$ monitor $\mathrm{y}_{\text {off }}$ in $\mathrm{mm}=-10.7034$
- After minimization of the solenoid angles:
the current allignment of the first measurement:
x, y Laser Offset mm: $0.021136 \quad-0.26841$
x, y Solenoid Offset mm: 0.98890 .12406
pitch,yaw of Solenoid deg: $0.011218 \quad 0.021441$
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ const magnetic field muT: -13.2563 48.7982 -46.2261
Goal Function $F=13.7901$

Application

- After minimization of the solenoid offset:

x, y Laser Offiset mm: $0.025228 \quad-0.2326$
x, y Solenoid Offset mm: $0.96697 \quad 0.035533$ pitch,yaw of Solenoid deg: 0.00986340 .021353 $\mathrm{x}, \mathrm{y}, \mathrm{z}$ const magnetic field muT: -12.4052 57.6137
- After minimization of the laser offset:

the current allignment of the first measurement:
x, y Laser Offset mm: -0.0048696 -0.15211
x, y Solenoid Offset mm: 0.964090 .035199
pitch,yaw of Solenoid deg: 0.00849330 .019996
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ const magnetic field muT: -12.9381 50.5098 -59.148
Goal Function $F=8.5322$

Application

- After simulating an additional constant magnetic field:

the current allignment of the first measurement: x, y Laser Offset mm: -0.0049604 -0.14759 x, y Solenoid Offset mm: 0.962020 .037277 pitch,yaw of Solenoid deg: 0.00910150 .021082 $\begin{array}{lll}x, y, z & \text { const magnetic field muT: } & -25.2439\end{array} 46.7069$ Goal Function $\mathrm{F}=7.4674$
- Finally all variables are minimized simulaneously:

the current allignment of the first measurement
x, y Laser Offset mm: 0.092856 -0.38894
x, y Solenoid Offset mm: $0.61486 \quad 0.13204$
pitch,yaw of Solenoid deg: 0.039951 -0.023553
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ const magnetic field muT: -89.9886 -20.7286 1.47509
Goal Function $F=3.5944$

Summary

- A code for the beam dynamics of a reference particle in a RF-Photogun has been developed
- The cross-check with ASTRA shows very good agreement
- Potential sources of misalignment have been implemented
- Laser spot-offset, Solenoid-offset, Solenoid pitch and yaw, constant magnetic field
- A goal function based on weighted measurements has been introduced
- The program has the option for subsequent simulations to exploit measurements with known differences in alignment (e.g. solenoid movements)
- The code has been applied to experimental data sets for two solenoid test movements (basic +2 test movements), resulting in a good fit
- The resulting misalignment:
- Laser-off. in mm: (0.09,-0.39); Solenoid-off. in mm: (0.61,0.13);

Solenoid pitch and yaw in deg.: (0.04,-0.02)

- Constant magnetic field in $\mu \mathrm{T}:(-90,-20,1.4)$
- The package is prepared for practical use

Thank you for your attention!

3-dimensional fields of the RF-Gun

- Applying polynomial expansion in r to Maxwell's equations in cylindrical coordinates (r, θ, z), the components of \vec{E} and \vec{B} can be derived

$$
\begin{aligned}
& E_{z}(t, r, z)=\left[E_{z}(r=0, z)-\frac{r^{2}}{4}\left(E_{z}^{\prime \prime}(r=0, z)+\frac{\omega^{2}}{c^{2}} E_{z}(r=0, z)\right)+O\left(r^{4}\right)\right] \sin \left(\omega t+\varphi_{0}\right) \\
& E_{r}(t, r, z)=\left[-\frac{r}{2} E_{z}^{\prime}(r=0, z)+\frac{r^{3}}{16}\left(E_{z}^{\prime \prime \prime}(r=0, z)+\frac{\omega^{2}}{c^{2}} E_{z}^{\prime}(r=0, z)\right)-O\left(r^{4}\right)\right] \sin \left(\omega t+\varphi_{0}\right) \\
& B_{\theta}(t, r, z)=\frac{\omega}{c^{2}}\left[\frac{r}{2} E_{z}(r=0, z)-\frac{r^{3}}{16}\left(E_{z}^{\prime \prime}(r=0, z)+\frac{\omega^{2}}{c^{2}} E_{z}(r=0, z)\right)+O\left(r^{4}\right)\right] \cos \left(\omega t+\varphi_{0}\right)
\end{aligned}
$$

- With the cylindrical coordinates and their unit vectors expressed in cartesian coordinates:

$$
\begin{array}{ll}
r=\sqrt{x^{2}+y^{2}} & \hat{\mathrm{e}}_{r}=\hat{\mathrm{e}}_{x} \cos (\theta)+\hat{\mathrm{e}}_{y} \sin (\theta) \\
\theta=\arctan \left(\frac{x}{y}\right) & \mathrm{e}_{\theta}=-\hat{\mathrm{e}}_{x} \sin (\theta)+\mathrm{e}_{y} \cos (\theta) \\
z=z & \hat{\mathrm{e}}_{z}=\hat{\mathrm{e}}_{z}
\end{array}
$$

- The \vec{E} and \vec{B} fields can be expressed as:

3-dimensional fields of the RF-Gun

$$
\vec{E}=E_{0}\left(\begin{array}{c}
-\frac{x}{2}\left[E_{z, n o r m}^{\prime}(z)+\frac{x^{2}+y^{2}}{8}\left(E_{z, n o r m}^{\prime \prime}(z)+\frac{\omega^{2}}{c^{2}} E_{z, n o r m}(z)\right)\right] \\
-\frac{y}{2}\left[E_{z, n o r m}^{\prime}(z)+\frac{x^{2}+y^{2}}{8}\left(E_{z, n o r m}^{\prime \prime}(z)+\frac{\omega^{2}}{c^{2}} E_{z, n o r m}(z)\right)\right] \\
E_{z, n o r m}(z)-\frac{x^{2}+y^{2}}{4}\left(E_{z, n o r m}^{\prime \prime}(z)+\frac{\omega^{2}}{c^{2}} E_{z, n o r m}(z)\right)
\end{array}\right) \cdot \sin \left(\tau+\varphi_{0}\right)
$$

And
$\vec{B}=E_{0} \frac{\omega}{c^{2}}\left(\begin{array}{c}-\frac{y}{2}\left[E_{z, n o r m}(z)-\frac{x^{2}+y^{2}}{8}\left(E_{z, n o r m}^{\prime \prime}(z)+\frac{\omega^{2}}{c^{2}} E_{z, n o r m}(z)\right)\right] \\ -\frac{y}{2}\left[E_{z, n o r m}(z)-\frac{x^{2}+y^{2}}{8}\left(E_{z, n o r m}^{\prime \prime}(z)+\frac{\omega^{2}}{c^{2}} E_{z, n o r m}(z)\right)\right] \\ 0\end{array}\right) \cdot \cos \left(\tau+\varphi_{0}\right)$

3-dimensional field of the Solenoid

- Similar to the field of the RF-Gun the Field of the Solenoid can be expressed with:

$$
\begin{aligned}
& B_{z}(r, z)=B_{z}(r=0, z)-\frac{r^{2}}{4} B_{z}^{\prime \prime}(r=0, z)+O\left(r^{4}\right) \\
& B_{r}(r, z)=-\frac{r}{2} B_{z}^{\prime}(r=0, z)+\frac{r^{3}}{16} B_{z}^{\prime \prime \prime}(r=0, z)+O\left(r^{5}\right)
\end{aligned}
$$

- Which leads to:

$$
\vec{B}=B_{0}\left(\begin{array}{c}
-\frac{x}{2}\left[B_{z, n o r m}^{\prime}(z)+\frac{x^{2}+y^{2}}{8} B_{z, n o r m}^{\prime \prime \prime}(z)\right] \\
-\frac{y}{2}\left[B_{z, n o r m}^{\prime}(z)+\frac{x^{2}+y^{2}}{8} B_{z, n o r m}^{\prime \prime \prime}(z)\right] \\
B_{z, n o r m}(z)-\frac{x^{2}+y^{2}}{4} B_{z, n o r m}^{\prime \prime}(z)
\end{array}\right)
$$

