Bunching factor estimation for macroparticle beams

Practical study and results with ASTRA electron beams

Georgi Georgiev Zeuthen, 2022-12-01

Introduction

Subheading, optional

01 First observations

- Past result
- Problem showcase
- •

02 High number of macroparticles

- Challenges
- Improvements and results

03 Smoothing spline

- Introduction
- Improvements
- Results
- Limitations

General notes

- Simulations with ASTRA of smooth and modulated photocathode laser
- Gun at MMMG \rightarrow 6.35 MeV/c
- Boooster at MMMG-20deg \rightarrow 17.0 MeV/c
- Most results at booster exit (4.51 m)
- Few examples with quadrupole transport
- Fourier analysis of ASTRA beams
- Bunching factor → relative amplitude of density modulation at given frequency

First observations

Simulation for sharp current spikes

- Modulated beam evolution with space-charge
 - Under right conditions \rightarrow sharp spikes
- Main solenoid field

•

- Focusing and density \rightarrow space-charge
- Non-linear SC with modulation \rightarrow spikes
- Spikes development
- Bunching increase
- Stronger solenoid \rightarrow high frequency bunching **Incorrect conclusion!**

Simulation with smooth beams

- Long Gaussian photocathode laser profile
 - No modulations \rightarrow no high freq. signal
- **Expected**: insignificant change by solenoid strength

Simulation with smooth beams

- Long Gaussian photocathode laser profile
 - No modulations \rightarrow no high freq. signal
- **Expected**: insignificant change by solenoid strength
- **Observed**: increase at very high frequencies
 - Visible noise in beam current

Unphysical result!

- Low number of macroparticles
 - Numerical noise (higher at high frequencies)
 - Enhanced by solenoid
 - ASTRA built-in noise reduction not sufficient

Severity of the problem

- Expected: modulations dominate high frequencies
- Numerical noise increase by solenoid
 - May overtake modulated beam
- Bunching factor analysis
 - Wrong results at higher frequencies
 - Noise baseline around 10⁻³
 - Inadequate for FEL simulation setup

Checkpoint

Subheading, optional

- Confirmed short spikes in beam current
- Difficult to analyze effect on bunching
 - Seeded FEL with short spikes unclear
- Macroparticle numerical noise is high
 - Depends on main solenoid
- **Solution**: more macroparticles
 - Lower numerical noise
 - Increased simulation time
 - Increasing analysis time

Simulations with high number of macroparticles

Increased number of macroparticles

- Increase from 500k to 10M macroparticles
 - Double longitudinal space-charge binning
- Simulation execution
 - Over 30 h to get after solenoid
 - Over 33 h to booster exit
 - Over week? past undulator (still running...)
 - Requires ~4 GB RAM
 - Over 1 GB single beam file
- Very computationally intensive Fourier transform
 - Ideal method: particle by particle

Notes

- Cluster time limited to 48h per job
- Waiting time in queue for long jobs up to week
- AFS volumes can fill quickly

Comparison of 500k and 10M

Smooth beam with Imain=390A at 4.51m, 2nC

• First demonstration of improvement

- Noticeably lower noise in beam current
- Order of magnitude lower bunching at 3 THz

Severity of the problem II

- Expected: modulations dominate high frequencies
- Observed: up to ~2.5 THz only
- Better indication for seeding?
 - Still misleading
 - Noise baseline between 10⁻⁴ to 10⁻³

Simulation with smooth beams

Smooth beam at 4.51m, 2nC with 10M macroparticles

Reference smooth beam comparison

- No modulations \rightarrow no high freq. signal
- **Expected**: insignificant change by solenoid strength
- **Observed**: increase at very high frequencies
- Main problem remains
 - Macroparticle numerical noise is high
 - Depends on main solenoid
- Unclear effect of seeding at 3 THz
 - Hidden in noise? Actual level?

Result: laser modulation visibility

Defined by interferometric visibility

 $V = \frac{MAX - MIN}{MAX + MIN}$

- Sharp spikes development
 - Sensitive to initial modulation visibility
- Crucial for experiment

Result: sharp spikes development

- Non-linear SC + modulations \rightarrow sharp spikes •
- 0° phase initial modulation •
 - Blue line, SC smeared
- 90° phase modulations vanish (red line) •
- 180° phase high harmonics of base modulation •
 - Constructive interference
- Note: bunching analysis inconclusive ٠

Checkpoint

- Increased number of particles 20 times
- Challenging simulation and analysis
- Lower macroparticle noise
 - Depends on solenoid, unclear baseline
 - Around 10⁻⁴ bunching, too high for FEL
- Overall improvement, but insufficient
- Better analysis will give important benefits!

Analysis with smoothing spline

Introduction

- Spline curve interpolation
 - Minimizes overall surface curvature
 - Second order continuity
 - Passes through input points
- Spline smoothing
 - Piecewise polynomials (not convolution)
 - May choose new anchors (not input points)
 - Beneficial behavior

Introduction

- Spline curve interpolation
 - Minimizes overall surface curvature
 - Second order continuity
 - Passes through input points
- Spline smoothing
 - Piecewise polynomials (not convolution)
 - May choose new anchors (not input points)
 - Beneficial behavior
- Ignores small fluctuations
- Preserves prominent features

Notes to Fourier analysis

- Long Gaussian → narrow spectrum
- Short Gaussian → wide spectrum
- Repeated spikes \rightarrow harmonics in envelope
- Sharp edge \rightarrow long tail of repeated peaks

Analysis with smooth beams

- Reference smooth beam comparison
 - No modulations \rightarrow no high freq. signal
- **Expected**: insignificant change by solenoid strength
- **Observed**: insignificant change!
- Provides consistent noise floor
- Noise levels ~10⁻⁵ bunching at 3 THz
 - From Genesis simulations: no seeding effect

Bunching from modulated beam

Beam current profile 120 100 Current [A] 80 60 40 Smooth 20 Modulated \cap -10-50 5 10 Time [ps] Beam bunching 10⁰ Smooth from Spline Modulated from Spline 10^{-1} **Bunching factor** 10-10- 10^{-4} 10⁻⁵

 10^{-6}

0.0

0.5

1.0

1.5

2.0

f [THz]

2.5

3.0

3.5

4.0

- Slightly developed sharp spikes
- Clearly increased bunching factor
 - From base modulation up to ~2 THz
 - Nothing at 3 THz!

Bunching from modulated beam

- Slightly developed sharp spikes
- Clearly increased bunching factor
 - From base modulation up to ~2 THz
 - Nothing at 3 THz!
- Regions in bunching over frequency
 - Narrow base peak
 - Harmonic peaks to wider frequency
 - Sharp edge baseline

Analysis limited by tail edges in current profile!

DESY. | Bunching factor estimation for macroparticle beams | G. Georgiev, 1 Dec 2022

Result: laser modulation visibility

Beam with Imain=370A at 4.51m, 2nC with 10M macroparticles

• Lower visibility \rightarrow severely limited sharp spikes

- At $80\% \rightarrow$ up to 2 THz
- At 50% only up to 1 THz
- Crucial for the experiment

DESY. | Bunching factor estimation for macroparticle beams | G. Georgiev, 1 Dec 2022

Result: bunch charge effects

- Non-linear effect from space charge forces
 - Strong dependence on charge
- Expected: higher charge \rightarrow more non-linear SC

Result: bunch charge effects

- Non-linear effect from space charge forces
 - Strong dependence on charge
- Expected: higher charge \rightarrow more non-linear SC
- Observed: spikes develop faster at low charge
- Bad: FEL process benefits from charge
- Good: developed spikes \rightarrow high bunching
 - Bunching factor 10⁻³ at 3 THz
 - Very efficient seeding

f [THz]

Beam with Imain = 370A at 4.51m, with 10M macroparticles

Result: solenoid focusing

- Better sharp spike development •
 - Observed as expected
- Very strong bunching at very high frequencies •
- Compromise with beam transport •
 - Emittance control also by solenoid

Result: transport to undulator

Beam with 80% modulation Imain=385A, 2nC with 10M macroparticles Beam current profile 200 z = 4.5m175 z = 18mz = 28m 150 Current [A] 100 22 75 50 25 0 -10-5 10 0 5 Time [ps]

- Space charge forces frozen in high section
 - Some effect
 - Longitudinal phase-space modulation
- Spikes development continues slowly
- Start to degrade past some point
 - High bunching mostly preserved
 - Transport is not main challenge

Limitation of analysis

- Spline smoothing effective on small noise
- Strong prominent noise is not smoothed
- Less particles require stronger smoothing value

Limitation of analysis

- Spline smoothing effective on small noise
- Strong prominent noise is not smoothed
- Less particles require stronger smoothing value
- Stronger smoothing has effect on features
 - Can smooth sharp spikes
 - Puts back question on bunching factor

Conclusion

Bunching factor estimation

- Shot noise is a major challenge in simulated beams
- Special analysis with smoothing spline
 - Preserves features, clears noise
- Spline smoothing requires good start
 - Noise much lower than features
 - Increased smoothing changes behavior
- With 10M macroparticles \rightarrow enough for 3 THz
- Simulation setup and analysis \rightarrow few weeks work
 - Tricky: practical and artificial limits
 - Computationally heavy (high budget)
 - Compromise: 3M macroparticles?

Results

- Photocathode laser modulation \rightarrow crucial
- Solenoid and beam charge \rightarrow key
- Sharp spikes can provide bunching at 3 THz

Outlook

• Experimental confirmation

Thank you