Progress on the R&D platform FLASHlaß@PITZ:

→ we aim to provide unique R&D capabilities for studying electron FLASH radiation therapy and radiation biology for you !

Frank Stephan (frank.stephan@desy.de) for the PITZ team, Head of the Photo Injector Test facility at DESY in Zeuthen (PITZ)

Faculty Disclosure

I am only employed by DESY, a public research center in Germany, so there are

No Disclosures

Outline of the talk

Extremely flexible & tightly controlled high brightness electron beams for cancer research

Introduction: FLASH RT, DESY + PITZ

Beam parameters details are important

FLASH*lab*@PITZ capabilities

Status of realization:

- A) Commissioning of mother beamline \rightarrow tight control of beam properties
- B) Start-up beamline for FLASHlad @PITZ \rightarrow first experiments done
- C) Design of full beamline for FLASHlad@PITZ
- D) Preparing *in vivo* lab
- E) Idea to detect tumor location and treat it within 1 ms

Summary: you are invited to come and exploit the unique PITZ beam parameter range

What is FLASH radiation therapy ?

FLASH effect is an experimental observation (Favaudon, 2014), underlying mechanism still under study

- Medical/biological definition of the FLASH effect (in vivo):
 - Sparing of healthy tissue by radiation with short, high intensity pulses (e⁻, p, ion, x-ray) while having at least the same tumor control as with conventional radiation

Basic sketch from M.R. Ashraf et al., Frontiers in Physics, 2020, doi: 10.3389/fphy.2020.00328

- \rightarrow Opening therapeutic window
- → Strongly reduce treatment time, simply life for patients
- \rightarrow Treating radiation resistant cancer
- → With online imaging (e.g. via XFI): confine dose to moving cancer (e.g. lung)

DESY

Largest accelerator center in Germany, one lab - two locations: Hamburg + Zeuthen (near Berlin) (ARES: single e⁻ bunches, 50Hz, 160 MeV)

Facts and Figures

- publicly funded national research centre of the Helmholtz Association
- Employees at DESY
 - approximately 2700, including 1180 scientists
- Interdisciplinary research, international cooperation
- Research at DESY in 4 areas:
 - Accelerators
 - Photon Science (focus in Hamburg)
 - Particle Physics
 - Astroparticle Physics (focus in Zeuthen)

DESY.

Courtesy of Ulrike Behrens

New activity: \rightarrow FLASH*lab*@PITZ

Where we come from and where we go?

The Photo Injector Test facility at DESY in Zeuthen (PITZ) was+is used • to test and optimize high brightness electron sources for Free-Electron-Laser user facilities (FELs) like the European XFEL in Hamburg

general accelerator R&D + applications of high brightness beams We also do → R&D on electron FLASH radiation therapy (FLASHlab@PITZ)

Use existing accelerator

+ own + external resources

free space for

FLASHlab@PITZ area:

DESY. | Frank Stephan | Progress on FLASHlab@PITZ | FRPT 30.11.2022

- **Repetition rate of RF** defines repetition of **radiation pulse** + total **irradiation time** during session
- This results in very different

•

٠

- time structure of radiation pattern •
- possibilities to change the time structure flexible ٠
- bunch charge \rightarrow instantaneous dose and dose rate •
- beam quality \rightarrow capability to focus beam for mico beam RT + scanning ٠

Definition of relevant beam parameters

Here: concentrate on timing parameters for one application period (treatment session / positioning of patient)

quantity	description	mainly used till now 3 GHz linac, therm. emission	e.g. PITZ 1.3 GHz linac, photo emission
T _{treatment}	Time needed for one treatment session	< 200 ms for FLASH	< 1 ms possible
t _{b.train}	Length of bunch train (in RT commonly called 'pulse')	e.g. 0.5 – 4 <mark>µ</mark> s	0 – 1 <mark>m</mark> s
# _{bunch}	Number of bunches in bunch train	e.g. 1500 – 12000	1 – 4500
Δt _{b.train}	Separation of 2 neighboring bunch trains	e.g. <mark>0.003 – 0.1 s</mark>	0.1 – 1 s
Δt _{bunch}	Separation of 2 neighboring bunches	0.3 n s	0.2 – 10 <mark>µ</mark> s
t _{bunch}	Length of individual electron bunch, FWHM	e.g. ~30 ps	<mark>0.1</mark> − 60 ps
q _{bunch}	Charge per bunch = average current in train * t _{b.train} / # _{bunch}	e.g. 0.1 – 100 pC	0.1 – 5000 pC

Definition of relevant beam parameters

General: characterize beams used as precise as possible !!!

Here: concentrate on timing parameters for one application period

Examples for bunch trains ('pulses'):

	T _{treatment}	20 - 1 μs - 2 μs	3000 2500
	$\begin{array}{c} & & t_{b.train} \\ & & & \\ & &$	C. Bailat, private communication derived from R. Oesterle at al, DOI: 10.1002/acm2.13433	PITZ bunch trains with 100 bunches of charge 2700 ± 15 pC
quantity	description	mainly used till now 3 GHz linac, therm. emission	e.g. PITZ 1.3 GHz linac, photo emission
T _{treatment}	Time needed for one treatment session	< 200 ms for FLASH	< 1 ms possible
t _{b.train}	Length of bunch train (in RT commonly called 'pulse')	e.g. 0.5 – 4 <mark>µ</mark> s	0 – 1 <mark>m</mark> s
# _{bunch}	Number of bunches in bunch train	e.g. 1500 – 12000	1 – 4500
Δt _{b.train}	Separation of 2 neighboring bunch trains	e.g. <mark>0.003 – 0.1 s</mark>	0.1 − 1 s
Δt _{bunch}	Separation of 2 neighboring bunches	0.3 n s	0.2 – 10 <mark>µ</mark> s
t_{bunch}	Length of individual electron bunch, FWHM	e.g. ~30 ps	<mark>0.1</mark> − 60 ps
q _{bunch}	Charge per bunch = average current in train * t _{b.train} / # _{bunch}	e.g. 0.1 – 100 pC	0.1 – 5000 pC

Unique beam properties at PITZ

allow extremely flexible treatment parameters and dose distribution (in space + time)

- Possibility of **bunch trains** with **up to 1 ms** length:
 - Bunch repetition rate within train 0.1 1 MHz (opt. 4.5 MHz)

- Kicker can be used to distribute the bunches of the bunch train (1ms) over treatment area
 - → "painting" tumor with mini beams within 1 ms
 - → ~no organ motion
 - Kicker system is already existing
 - → possibility of spatially fractionated radiation therapy (SFRT)

This is **not** science fiction !

Similar kicker system is in every day operation at European XFEL !!!

Unique beam properties at PITZ

allow extremely flexible treatment parameters and dose distribution (in space + time)

- Possibility of **bunch trains** with **up to 1 ms** length: •
 - Bunch repetition rate within train 0.1 1 MHz (opt. 4.5 MHz)
 - Trains can be repeated with up to 10 Hz •
 - → 1 1000 bunches in 1 ms (opt. up to 4500)
 - \rightarrow 1 10 000 bunches in 1 s (opt. up to 45 000)
 - Depending on bunch charge (fC 5nC) indiv. bunches have a) length of ~0.1 – 60 ps (bunch compressor) b) spot size down to ~100µm
- **Kicker** can be used to distribute the bunches of the bunch train (1ms) over treatment area
 - → "painting" tumor with mini beams within 1 ms
 - \rightarrow ~no organ motion
 - Kicker system is already existing •
 - \rightarrow possibility of spatially fractionated radiation therapy (SFRT)

	< 1 mm 1-2 mm
Courtesy of Angel	es

DESY. | Frank Stephan | Progress on FLASHlab@PITZ | FRPT 30.11.2022

Two examples:

nave	Options @PITZ:	low dose case	high dose case
	Bunch charge	0.1 pC	5 000 pC
9	Single bunch OR train	single bunch	1ms train (1MHz)
	RF pulse rep. rate	1 Hz	10 Hz
	Bunch length	<1 ps	~30 ps
Assumptions	Dose per bunch	0.02 Gy	1000 Gy
~20 MeV	Dose rate per bunch	2•10 ¹⁰ Gy/s	4•10 ¹³ Gy/s
e-beam in water	Dose per train(ms)	0.02 Gy	1∙10 ⁶ Gy
with 1mm³ irradiation	Dose rate per train(ms)	20 Gy/s	1∙10 ⁹ Gy/s
volume.	Dose per second	0.02 Gy/s	1∙10 ⁷ Gy/s

DESY. | Frank Stephan | Progress on FLASHlab@PITZ | FRPT 30.11.2022

PİT

A) Commissioning of mother beamline: lasing at THz SASE FEL, → tight control of beam properties

Mother beamline \rightarrow THz SASE FEL:

- Mother beamline for FLASHlab@PITZ \rightarrow 17m new beamline were built + commissioned \rightarrow lasing
- Uses bunch charges up to 4 nC + bunch trains
- Needs tight control of beam properties
- Needs high reproducibility

FLASHlab@PITZ uses strong synergy

→ Beam properties measurements: bunch length, bunch charge, transverse beam distribution, beam position

DESY

Bunch length measurement

Using transverse deflecting structure (TDS) to reach <ps time resolution

• Measuring principle:

D. Malyutin, Ph.D. thesis, Universität Hamburg, (2014)

Measurement results:

DESY. | Frank Stephan | Progress on FLASHlab@PITZ | FRPT 30.11.2022

Courtesy of Raffael Nienczyk, Xiangkun Li

Typical beam properties from current PITZ beamline

B) Start-up beamline for FLASHℓaℓ@PITZ → first experiments are done

Start-up beamline for FLASHlab@PITZ:

- Allows early experiments on FLASH RT R&D
 - Beam characterization
 - Dosimetry
 - First experiments with chemical, biochemical and biological samples
- Dispersion limits minimum horizontal beam size, only vertical kicker installed

Courtesy of Xiangkun Li, Zohrab Amirkhanyan, Felix Riemer

First chemical / biochemical experiments at FLASHlab@PITZ

First proof-of-concept for doing chemical and biological research at PITZ

DESY. | Frank Stephan | Progress on FLASHlab@PITZ | FRPT 30.11.2022

DESY.

C) Design update of full beamline FLASHlab@PITZ + laser system upgrade

D) Preparing an in vivo laboratory for animal experiments at PITZ

 A container solution is the quickest way of allowing in vivo experiments at PITZ

Courtesy of Michael Köpke

- Money was allocated
- In contact with building companies

 Operation of *in vivo* lab planned in close collaboration with MDC, TH Wildau and local partners

E) Idea to detect tumor location and treat it within 1 ms \rightarrow tightly confine dose to moving cancer

Principle:

- detect tumor location by X-ray fluorescence imaging (XFI):
 - gold nanoparticles (GNPs) are accumulated in tumor by tumor markers
 - Pencil electron beam scans object and creates "X-ray echos" by exciting fluorescence of these labels

F. Grüner et al., Sci. Rep. 8, 16561 (2018)

Example of non-invasive, high sensitive and quantitative analysis:

measurement of natural iodine concentration in the thyroid of a mouse via XFI

C. Sanchez-Cano et al., *ACS Nano* **2021**, 15, 3754–3807 C. Körnig et al., *Scientific Reports* 12, 2903, **2022**

 \rightarrow Check XFI signal for each kicker setting: yes = tumor, no = no tumor

- second part (high dose) → send it exactly to those kicker settings where XFI signal was found during scanning in first step → kill tumor
- should be possible within 1 ms \rightarrow ~no organ motion at this time scale

→ tightly confine dose to moving cancer (e.g. in the lung)

ms

low

high

logarithmic dose

Current cooperation partners of FLASH*lab***@PITZ :**

With FLASHlab@PITZ we ...

offer

- worldwide uniquely wide **parameter space** to study FLASH radiation therapy
- extremely flexible **pulse structure** of the radiation ($ps \rightarrow \mu s \rightarrow ms \rightarrow s$, min) \rightarrow to be chosen by user
- tight **control** and high **stability** of radiation (feedback algorithms)
- access for all scientifically interested groups

aim to (together with cooperation partners)

- systematically study under which conditions the FLASH effect is present
- understand the mechanism of the FLASH effect
- push the R&D on FLASH radiation therapy on the next level
- finally find the optimum treatment conditions for curing different types of tumor

Summary

FLASHlad@PITZ with unique parameter range under commissioning and will be extended further

- Currently collecting interests from FLASH RT community about doing experiments or model tests at PITZ
 - to check that we are on the right path
 - to align research capabilities to the interests of the FLASH RT community
- ➔ If you are interested to exploit the unique beam parameter range by doing experiments or model testing (theory/simulations) at FLASHlale@PITZ and have not been contacted yet
- → send email to frank.stephan@desy.de
- → I send you short description of capabilities at FLASHlal@PITZ and questions for feedback
- → Deadline for feedback 15.12.2022

