First Lasing of the THz SASE FEL at PHZ

Photo Injector Test facility at DESY in Zeuthen:

R&D of high-power tunable accelerator-based THz source for the European XFEL

Prach Boonpornprasert for the THz@PITZ Team The 8th annual MT meeting, DESY Hamburg, 26-27.09.2022

Rehearsal in PPS 22.09.2022

HELMHOLTZ

THz SASE FEL source for pump-probe experiments at European XFEL

PITZ-like accelerator can enable high-power, tunable, synchronized THz radiation

Proof-of-principle experiment on THz SASE FEL at PITZ

Using LCLS-I undulators (available on loan from SLAC, USA)

Some Properties of the LCLS-I undulator

Properties	Details
Туре	planar hybrid (NdFeB)
K-value	3.585 (3.49)
Support diameter / length	30 cm / 3.4 m
Vacuum chamber size	11 mm x 5 mm
Period length	30 mm
Periods / a module	113 periods

λ_{rad} ~100 µm \rightarrow ~17 MeV/c

The project "Conceptual design of a THz source for pump-probe experiments at the European XFEL based on a PITZ-like photo injector" was approved by the European XFEL Management Board

- → PITZ + LCLS-I undulator Proof-of-principle experiments (2019-2023)
- \rightarrow Deliver the conceptual design report

THz SASE FEL at PITZ: Beamline Extension

PITZ upgrade for the proof-of-principle experiment

THz SASE FEL at PITZ: Construction and Installation

History of the tunnel annex

THz SASE FEL at PITZ: First Commissioning with E-Beam

Transport and matching of e-beam with bunch charges of 100 pC -> 1 nC

THz SASE FEL at PITZ: 1st Lasing from 1 nC Beam

Pyrodetector signal from the oscilloscope (09.08.2022)

THz SASE FEL at PITZ: 2 nC Beam Transport and Matching

THz SASE FEL at PITZ: Gain Curve Measurement Setup

Simplified layout of the gain curve measurement setup

THz SASE FEL at PITZ: Gain Curves

First Characterization of FEL Gain Curves

- Lasing at ~100μm → high gain THz SASE FEL at PITZ!
- Gain curves at 1, 2 and 3nC

In linear model of SASE FEL, the probability distribution of the radiation energy can be described well by a gamma probability density function: $\rho(W) \propto \frac{M^M}{\Gamma(M)} \left(\frac{W}{\langle W \rangle}\right)^{M-1} \frac{1}{\langle W \rangle} \exp\left[-M\frac{W}{\langle W \rangle}\right]$

Reference: E.L. Saldin et al. NIM A 407 (1998)

THz SASE FEL at PITZ: Further Tuning

Recently: Saturation observed for 2nC: max <W>~22µJ

Conclusions

THz SASE FEL at PITZ

- Photo Injector Test facility at DESY in Zeuthen:
 - Develops high brightness electron beams sources and their applications
 - Prototype of accelerator based THz source for pump-probe experiments at the European XFEL
- Proof-of-principle experiment ongoing @PITZ (supported by E-XFEL):
 → first electrons through the LCLS-I undulator → 22.07.2022
 → 1st THz SASE FEL Lasing → beginning of August 2022
 → High gain management at 2THT
 - → High gain measured at ~ 3THz!
 - → Strong dependence on beam current and transport /matching,
 - → FEL saturation at >20µJ with 2nC (not fully optimized)

High-gain THz SASE FEL at a PITZ-like accelerator -> it works!!!

- Next steps:
 - Detailed tuning of high-charge beam transport/matching
 - Setup full THz diagnostics (spectral characterization + BPF)
 - Other dedicated studies (bunch compressor, seeded THz FEL)

THz@PITZ Team and Collaboration

Many thanks and let's keep moving forward! **DESY** Zeuthen

- Z. Aboulbanine ٠
- G. Adhikari ٠
- N. Aftab
- P. Boonpornprasert ٠
- G. Georgiev ٠
- J. Good
- M. Gross ٠
- A. Hoffmann ٠
- M. Krasilnikov
- X.-K. Li ٠
- A. Lueangaramwong ٠
- R. Niemczyk •
- A. Oppelt ٠
- H. Qian ٠
- C. Richard
- F. Stephan ٠
- G. Vashchenko ٠
- T. Weilbach

- R. General •
- L. Heuchling
- M. Homann
- L. Jachmann,
- D. Kalantaryan
- W. Köhler
- G. Koss
- S. Maschmann
- D. Melkumyan
- F. Müller
- R. Netzel
- B. Petrosyan
- S. Philipp
- M. Pohl
- C. Rüger
- A. Sandmann-Lemm
- M. Schade
- E. Schmal
- J. Schultze
- S. Weisse •

UHH W. Hillert J. Rossbach

٠

٠

DESY Hamburg

- E. Schneidmiller
- M. Yurkov •
- J.

B. Krause M. Tischer • P. Vagin

- A. Brachmann
- N. Holtkamp •
- H.-D. Nuhn

Backup slides

THz SASE FEL at PITZ

THz@PITZ: original proposals (2018)

PITZ as prototype for an accelerator based tunable THz source for pump-probe experiments at the European XFEL

Start-to-end simulation

Proof-of-principle experiment on THz SASE FEL at PITZ

- Astra: Photocathode to Undulator entrance
- Genesis 1.3: FEL simulation (input from Astra)

Case	100 um	60um	Unit
Momentum	17	22	MeV/c
Pulse energy	493.1±109.8	294.8±83.8	μJ
Arrival time jitter	1.5	1.1	ps
Center wavelength	101.8±0.7	60.3±0.3	μm
Spectrum width	2.0 <u>±</u> 0.4	1.0±0.2	μm

Summary of Genesis 1.3 simulation

Start-to-end simulation

Proof-of-principle experiment on THz SASE FEL at PITZ

• Warp: Waveguide effect simulation (100um)

THz SASE FEL at PITZ: THz diagnostics setup

Simplified layout of the gain curve measurement setup

THz SASE FEL at PITZ: Gain Curves (3nC)

Measured pulse energy vs position along undulator for different locations

THz SASE FEL at PITZ: Further Tuning

Recently: Saturation observed for 2nC: max <W>~22µJ

THz SASE FEL source for pump-probe experiments at European XFEL

PITZ-like accelerator can enable high-power, tunable, synchronized THz radiation

Proof-of-principle experiment on THz SASE FEL at PITZ

Using LCLS-I undulators (available on Ioan from SLAC, USA)

Some Properties of the LCLS-I undulator

Properties	Details
Туре	planar hybrid (NdFeB)
K-value	3.585 (3.49)
Support diameter / length	30 cm / 3.4 m
Vacuum chamber size	11 mm x 5 mm
Period length	30 mm
Periods / a module	113 periods

λ_{rad} ~100 µm \rightarrow ~17 MeV/c

PITZ+ LCLS-I Undulator The project "Conceptual design of a THz source for pump-probe experiments at the European XFEL based on a PITZ-like photo injector" was approved by the European XFEL Management Board

- → dedicated R&D activities at PITZ
- \rightarrow Proof-of-principle experiments (2019-2023)

Main challenges:

- Space charge effect
- Waveguide effect
- Wakefields: geometric and conductive wall effects
- Strong undulator (vertical) focusing + horizontal gradient

Reference particle trajectories in the undulator with horizontal gradient