Simulation of booster BBA at PITZ

Progress summary and project outlook

Peetermans Karel
Zeuthen, 16/8/2022
Supervisor: Xiangkun Li

Project goals and concept of the script

Idea:

- Beam on-axis (on average) for optimal emittance
\rightarrow Tune steerers for perfect booster entry
\rightarrow This is characterised by a flat booster phase-dependance (this will be our observable)

- Make situation more realistic by implementing earth mag. field and possibly other constant fields
- Better understanding of booster BBA

Method:

- Beam optics for trajectory through steerers

$$
<7 \mathrm{MeV} \quad<25 \mathrm{MeV}
$$

- Astra simulation for booster

Gun LEDA

CDS

Overview of talk

- Astra parameter scan and peak-to-peak goal function
- Backward tracking and calculating steering corrections
- Booster BBA measurements June and August 2022
- Current problems and outlook rest of project

Astra parameter scan and fitting measurement to simulation

Parameter scan

Idea:

- Simulate sending macro-particles which cover full $x-x^{\prime}$ phase space through booster
- Simulate where each particle ends up, no space charge
- $\quad x_{c}$ and x_{c}^{\prime} are the bunch center and angle; in the simulation, each particle or electron represents a bunch with a given x_{c} and x_{c}^{\prime}
- Fit measured curve (x_{c} at EMSY1 vs booster phase) to simulated curve to know where the electron must have started
- Goal-function fit: R-sq. difference of measurement and simulated data point

Parameter scan

Peak-to-peak displacement after adding $B=(0,-50,0)$ uT, $P=6.3 \mathrm{MeV} / \mathrm{C}$

Parameter scan

Peak-to-peak displacement after adding $B=(0,-50,0)$ uT, $P=6.3 \mathrm{MeV} / \mathrm{c}$

For minimal x-displacement:

- Aim for particle to have positive angle to counteract effect of EMF
- Start with negative position so particle ends up around zero

Fitting measurement to simulation

Example of fitting measured curve (here measurement=simulation+noise)

Steering

Idea:

- Now the entering angle and position is known \rightarrow calculate effect of steerers
- Every steerer is assumed to be infinitesimally thin \rightarrow effect is a perfect angle 'kick'
- Backward tracking through all kicks to find coordinates at electron creation
- Include known strengths/couplings of steerers and EMF
\rightarrow Change steerer currents to aim particle into optimal position/angle

Steering

Two solutions: change four ($2 x / 2 y$) or five ($3 x / 2 y$) steerers
Adding more steerers \rightarrow more DOF \rightarrow 'smoother' solutions possible (minimize kick)

Measurements June 2022

Measurement prediction

Idea:

- In June 2022 booster BBA was performed, done by changing a steerer current and seeing if disp. improves
- Script should predict a new measurement starting from a prev. one if given the change in currents
- For higher accuracy two given measurements were used to predict a third
- Given two sets of currents
\rightarrow find predicted change $\Delta x / \Delta x^{\prime}$ between these two (no influence of const. fields)
\rightarrow fit simulated curves to meas. while enforcing sim. must differ by $\Delta x / \Delta x^{\prime}$ (room for $\pm 0.2 \mathrm{~mm} / \mathrm{mrad}$)
\rightarrow add term ensuring relative coordinate change between simulation is the same as in measurement
\rightarrow goal function looks like this: (the subscript 0 indicates being centered at zero)

$$
G\left(x_{1}, x_{2}, x_{\operatorname{sim} 1}, x_{\operatorname{sim} 2}\right)=\left(x_{1,0}-x_{\operatorname{sim} 1,0}\right)^{2}+\left(x_{2,0}-x_{\operatorname{sim} 2,0}\right)^{2}+\alpha \cdot\left|\overline{\left(x_{2}-x_{1}\right)}-\overline{\left(x_{\operatorname{sim} 2}-x_{\operatorname{sim} 1}\right)}\right|
$$

Measurement prediction

$$
G\left(x_{1}, x_{2}, x_{\operatorname{sim} 1}, x_{\operatorname{sim} 2}\right)=\left(x_{1,0}-x_{\operatorname{sim} 1,0}\right)^{2}+\left(x_{2,0}-x_{\operatorname{sim} 2,0}\right)^{2}+\alpha \cdot\left|\overline{\left(x_{2}-x_{1}\right)}-\overline{\left(x_{\operatorname{sim} 2}-x_{\operatorname{sim} 1}\right)}\right|
$$

- Advantages:
- Predict abolute measured coordinates
- Two fits are used, influenced less by noise on one measurement
- Control α to influence importance of relative coordinate change in fit
- Conditions for good script:
- Visual agreement of prediction and real measurement (shape of curve)
- x / x^{\prime} are correctly predicted ('real' values found by just fitting the new measurement)
- Absolute coordinate correctly predicted
- Goal function correctly predicted

Measurement prediction

X-direction, $\alpha=0.05$

- Test case: 4th of June morning shift booster BBA
- Files $T=1246, T=1247$ \& $T=1248$ only change $\mathrm{St} 5-\mathrm{Ver}$:

I: $4.5 \rightarrow 3.5 \rightarrow 2.5$
\rightarrow use first two to predict third

- X: shouldn't change, coupling is too small
- Measurement: increase in x of about .2mm

Measured and fit x vs. $\phi, \mathrm{T}=1246$ and 1247, $\alpha=0.05$

Measurement prediction

X-direction, $\alpha=0.05$

- Test case: 4th of June morning shift booster BBA
- Files $T=1246, T=1247 \& T=1248$ only change St5-Ver:

I: $4.5 \rightarrow 3.5 \rightarrow 2.5$
\rightarrow use first two to predict third

- X: shouldn't change, coupling is too small
- Measurement: increase in x of about . 2 mm
- Black: input measurements

Blue: output measurement and it's best fit
Green: predicted measurement

- Angle/pos. prediction is fine, absolute coordinate not exact

X predict $\mathrm{T}=1248$ from $\mathrm{T}=1246$ and $\mathrm{T}=1247$

Measurement prediction

Y-direction, $\alpha=0.05$

- Files $T=1246, T=1247$ \& $T=1248$ only change $\mathrm{St} 5-\mathrm{Ver}$: I: $4.5 \rightarrow 3.5 \rightarrow 2.5$
\rightarrow use first two to predict third
- Y : decreases every time, which is correct

Measurement prediction

Y-direction, $\alpha=0.05$

- Files $T=1246, T=1247$ \& $T=1248$ only change $\mathrm{St} 5-\mathrm{Ver}$: I: $4.5 \rightarrow 3.5 \rightarrow 2.5$
\rightarrow use first two to predict third
- Y : decreases every time, which is correct
- Black: input measurements

Blue: output measurement and it's best fit Green: predicted measurement

Measurements week 32 of 2022

Measurement prediction

- Test case: use two measurements to predict final booster BBA in less steps
- Use T=0013 and $T=0017$ since all four used steerercurrents are different
\rightarrow Predict T=0024 (final booster BBA)

Measurement prediction

X-direction, $\alpha=0.05$

Measurement prediction

Y-direction, $\alpha=0.05$

- Fit less good \rightarrow prediction less good as well

[^0]
Current problems and outlook

 rest of project
Current problems and outlook rest of project

Conclusion based on measurement data:

- Data fit and steerer correction method have been developed
- Angles are predicted well enough, resulting positions not always great
\rightarrow these are the same 'symptoms' as something being wrong with calibration/coupling measurements (dating back to 2019) or the Astra sim. (the EMF used in simulation may not be good)

To do:

- Redo calibration (some steerers were removed and reinstalled during installation gun 5)
- Test script for predicting optimal steerer currents, if necessary do it iteratively
- Somehow measure/calculate exact static fields across booster for improved Astra sim. and fitting

[^0]: DESY. | Simulation of booster BBA at PITZ | Karel Peetermans, 16/08/2022

