Development of Super-Radiant THz Source in Thailand

Ekkachai Komgmon

Ph.D. candidate in Applied Physics, Chiang Mai University

Ekkachai_kong@cmu.ac.th

Outline

Introduction and motivation

Terahertz (THz) radiation THz applications

Objective

PBP-CMU Electron Linac Laboratory (PCELL) accelerator Accelerator specifications

Undulator design

Undulator simulation

Radiation calculation

Results and conclusions

Current status of our accelerator

Introduction and motivation

THz radiation source

Low output power radiation source mW

i.e. Black body radiation, solid state oscillator, quantum cascad oscillator.

High output power radiation source MW THz Free-Electron Laser (FEL)

Properties:

Coherence, High power (MW), Tunable-frequency

Introduction and motivation

Applications Pump probe experiment

A pump pulse and a probe pulse, that interact with a sample material. The pump pulse initiates a sample response, and a probe pulse monitors the response.

Introduction and motivation

Types of FELs

SASE FEL Long undulator

Seeded FEL

Input laser

Oscillator FEL

Mirrors

Super-radiant FEL

Short electron bunch

^///// Output

radiation

∕////> Output radiation

Undulator radiation

Coherent radiation source

Super radiant FEL

Electron bunch length < radiation wavelength

Undulator radiation

Superradiant radiation

Undulator magnet

Electron beam

Incoherent radiation

 σ_z Intensity $\propto N_e$

"To design and develop the electromagnetic undulator for generation of super-radiant THz radiation at the Plasma and Beam Physics Research Facility in Thailand."

Chaing mai university

Faculty of science

PBP-CMU Electron Linac Laboratory (PCELL)

PBP-CMU Electron Linac Laboratory (PCELL) Diagram

PCELL Accelerator Specifications

Alpha magnet

TR station	Linac	
Parameter	Value	
Electron gun type	Thermionic	
Electron energy	5 – 25 MeV	
Bunch charge	up to 100 pC	agnet
Bunch length	100 - 300 fs	ole magne magnet
Energy spread	< 3%	cup
MIR undulator	r	Beam dump

Possible harmonic number at PCELL

PCELL Accelerator Specifications

THz beamline

Undulator Simulation

Parameter	Value
Number of periods	19.5
Period length (λ_u)	100 mm
Gap (g)	15 mm
К	0.1 - 2.164

Copper coil without cooling

Undulator radiation

Superradiant radiation

Radiation energy of an electron bunch

 $\begin{aligned} & \text{Coherence} \quad \text{Incoherence} \\ & W_{\text{pulse}} = W_{1e}[f(\omega,\sigma_t)N_e^2 - N_e(1 - f(\omega,\sigma_t))] \end{aligned}$

Gaussian bunch form factor $f(\omega, \sigma_t) = \exp(-\omega^2 \sigma_t^2)$

Radiation energy of a single electron

$$W_{1e} = \frac{d^2 W}{d\Omega d\omega} \Delta \Omega \Delta \omega; \qquad \qquad \Delta \Omega = \frac{2\pi}{\gamma^2} \frac{1 + K^2/2}{2nN_u}, \frac{\Delta \omega}{\omega} = \frac{1}{nN_u}$$

Longitudinal bunch Form factor

Longitudinal gaussian distribution $f(\omega, \sigma_t) = \exp(-\omega^2 \sigma_t^2)$

Superradiant THz FEL

Superradiant THz FEL

Pulse energy :Bunch charge : 100 pCBunch length : 100 fs

 $W_{pulse} = 2.63 \ \mu J$ at 1.15 THz

Undulator design Superradiant THz FEL

$$P_{peak}(\lambda_r) = \frac{\pi c e^2}{2\varepsilon_0} \frac{N_b (2n\gamma^2 \lambda_r - \lambda_u)}{\lambda_r \gamma^2 \lambda_r^2} N_e (1 + (N_e - 1)f(\omega)) (\frac{\Delta \omega}{\omega}) L_n F_n.$$

Undulator design Superradiant THz FEL

$$P_{average}(\lambda_r) = \frac{\pi e^2}{2\varepsilon_0} \frac{N_u N_b (2n\gamma^2 \lambda_r - \lambda_u)}{\tau_{rep} \gamma^2 \lambda_r^2} N_e (1 + (N_e - 1)f(\omega)) (\frac{\Delta \omega}{\omega}) L_n F_n.$$

Beam optimization at PCELL

Studied by N. Chaisueb

High bunch charge

High space charge forces High energy spread J Difficult to compress

Main parameters	10 MeV	16 MeV	
RMS bunch length (fs)	<mark>304.3</mark>	<mark>203.4</mark>	
Bunch charge (pC)	<mark>50</mark>	<mark>50</mark>	
Peak current (A)	165.7	245.7	
Energy spread	0.23%	0.16%	
Horizontal emittance (mm.mrad)	0.42	0.34	
Vertical emittance (mm.mrad)	0.29	0.35	

Results

PCELL facility

Parameter	Design Value	Final Value
Electron energy (Kinetic)	10 – 16 MeV	16 MeV
Bunch charge	100 pC	50 pC
Bunch length	100 fs	203.4 fs
Energy spread	< 3%	< 0.16%
Radiation frequency	0.5 – 3 THz	0.5 – 3 THz
Radiation wavelength	300 – 100 μm	300 – 100 μm
Bunch energy	2.63 μJ	0.904 μ J
Radiation peak power	5.21 MW at 1.15 THz	0.645 MW at 1.15 THz
Average radiation power	339 mW at 1.15 THz	44 mW at 1.15 THz

Results

Superradiant THz FELs

Facility	THz-FEL source		Electron beam		Undulator		
	f (THz)	W_{pulse} (μJ)	E (MeV)	Q (pC)	$\sigma_t (fs)$	λ_u (mm)	Ν
NSRRC	0.67 – 2.3	0.5 – 2.7	18.3 - 33.5	100	90 - 223	100	18
ELBE	0.1 - 3	1.3	15 - 35	100	> 30	300	8
EU - XFEL	< 3 THz	8 - 279	$(8.5 - 17.5) \ge 10^3$	100 - 500	23 - 100	1000	10
Kyoto	0.16 – 0.65	< 1.3	4.6	< 200	200 - 1500	70	10
PCELL	0.5 - 3	< 0.9	5 – 20 (16)	< 100 (50)	100 – 300 (203.4)	100	19.5

Conclusions

Electron energy : 16 MeV Bunch charge : 50 pC Bunch length : 203.4 fs

Undulator period length : 100 mm Number of period : 19.5 periods

Bunch energy : 0.904 μJ Radiation peak power : 0.645 MW at 1.15 THz Average radiation power : 44 mW at 1.15 THz

Future works

- 1. Benchmark the results from my calculation with the SPECTRA calculation.
- 2. Using electron beam distribution to re-calculate all of essential parameters.
- 3. Using software to track electrons though undulator magnet and observe the energy of the radiation.
- 4. Design the radiation properties measurement station.
- 5. Design beam transportation to transport THz radiation to the experimental hall.

Current status PCELL accelerator

Accelerator hall

Control room

Current status

PCELL accelerator

Accelerator hall

Future plan

PCELL accelerator

Thank you for your attention

