Showcase of idealized seeding methods for THz LCLS-I

Georgi Georgiev PPS, Jun 30 2022

Introduction

- Accelerator-based THz source
 - Pump-probe experiments at Eu-XFEL
- Free-electron laser
 - High power & tunable
 - Unstable shot-to-shot performance (SASE)
- Seeding introduction of coherent signal
 - FEL as amplifier seed determines final radiation

- SASE performance (2 nC, details on next slide)
 - Low FEL efficiency
 - Shot-to-shot energy deviation of 86%
 - Arrival time jitter of 1.6 ps

General example: pulse energy along undulator and final spectrum (simulation, courtesy X.K. Li @ PITZ)

Simulation setup

- Performed with Genesis v2
- Beam current 100 A for 20 ps (2 nC)
 - Quiet loading reduce noise at **resonant frequency**
- Transverse emittance 4.0 mm mrad
- Beam momentum 17 MeV/c (gamma=33.4)
 - 3.0 THz resonant frequency
 - 0.5 % uncorrelated energy spread
- Longitudinal space charge forces included
 - Previous sims with Genesis v4 have no SC!
- Macro particles 8192 per wavelength

Four seeding options

- Laser seeded FEL
 - Seed signal is radiation from external source
 - Main parameter is power
- Pre-bunched beam
 - Seed signal is initial microbunching of the beam
 - Main parameter is bunching factor
- Energy modulated beam
 - Seed signal is periodic long. energy modulation
 - Main parameter is modulation amplitude
- Short seeding spike
 - Super-radiant spike emits coherent radiation
 - Old results only, few parameters to tune

Laser seeded FEL

Seed signal is radiation from external source

- Seeding effect of the method
 - Improved efficiency final radiation energy
 - Reduction of shot-to-shot energy fluctuation
 - Orders of magnitude lower time jitter
- Effect monotonously increases with power

Pre-bunched beam

Seed signal is initial microbunching of the beam

- Seeding effect of the method
 - Improved efficiency final radiation energy
 - Reduction of shot-to-shot energy fluctuation
 - Orders of magnitude lower time jitter
- Effect monotonously increases with bunching

Energy modulated beam

Seed signal is periodic longitudinal energy modulation

- Seeding effect of the method
 - Improved efficiency final radiation energy
 - Reduction of shot-to-shot energy fluctuation
 - Orders of magnitude lower time jitter
- Effect monotonously increases with amplitude
 - To a point too much spread is harmful to FEL
- Strong seeding even with very small modulations

Energy modulated beam

Seed signal is periodic longitudinal energy modulation

- Seeding effect of the method
 - Improved efficiency final radiation energy
 - Reduction of shot-to-shot energy fluctuation
 - Orders of magnitude lower time jitter
- Effect monotonously increases with amplitude
 - To a point too much spread is harmful to FEL
- Strong seeding even with very small modulations
 - Better option than pre-bunched beam?
 - Artificially low noise from quiet loading?

Short seeding spike

Super-radiant spike emits coherent radiation

- Old results no space charge!
- Short spike 500 A, 33 fs flattop
- · Seeding effect of the method
 - Improved efficiency final radiation energy
 - Lower time jitter
- Update simulation technical challenges

Outlook

Seeding methods in practice

- More realistic beams
 - Start to end simulation including ASTRA
 - Bunch compressor option
- Photocathode laser modulation
 - Superposition of pre-bunched and energy modulated
 - Modulation frequency limit laser and response time
- External radiation source hardware limits
- Short seeding spike to non-linear space-charge
 - Many spikes from higher harmonic oscillations

Summary

- Independent of seeding method
 - Improved FEL efficiency
 - Lower energy fluctuation
 - Lower arrival time jitter
- More simulations with realistic cases
 - All four methods may be applied
 - Technical and software challenges

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Georgi Georgiev PITZ georgi.georgiev@desy.de

www.desy.de