Update on beamline design for electron FLASH radiation therapy

Xiangkun Li PPS, 16/06/2022

Outline

- Introduction
- Simulation results
 - Optimization of photoinjector
 - Transport and matching
 - Transport after dogleg
- Summary

Introduction

Overview of new beamline

Introduction

- Imaging using quadrupoles after the exit window is given up due to air scattering effects
 - The sample will be brought closer to the exit window (2-5 cm downstream)
 - A pulsed solenoid could be an option for focusing swept beams into samples to produce Bragg-peak like dose distribution

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

A PULSED SOLENOID FOR INTENSE ION BEAM TRANSPORT*

D. Shuman*, E. Henestroza, G. Ritchie, W. Waldron, D. Vanacek, S.S.Yu, LBNL, Berkeley, CA, USA

tion experiment [3], [4]. The magnet described here is for NDCX-1b and the requirements are: a solenoidal field of 3 T of 5 cm radius over an effective length of 0.4 m, with the field time variation of less than 0.2% over a beam passage period of 4 μ sec.

Figure 3: Pulsed solenoid ready for final potting

Introduction

Consideration on S2E simulation

- Full range charge (a few pC to 5 nC) were considered
 - Laser shaping could help at high charges MBI laser: Gaussian, $\sigma_{x,y} = 1$ mm, FWHM = 8 ps
 - Beam energy is 22 MeV (or 22.5 MeV/c) after the booster
 - Particle tracking with Astra (photocathode to EMSY1), Ocelot (from EMSY1 to exit window)

- Three steps
 - Photoinjector optimization, up to EMSY1@5.28m
 - Booster phase scanned to minimize energy spread Beam transport and matching to the dogleg, until 2nd dipole exit
 - Beam transport to exit window (small and big beams)

Simulation results

Initial beam 10 pC, 100 pC and 1 nC

	10 pC	100 pC	1 nC	5 nC	
BSA	0.2	0.8	1.8	4.5	mm
Imain	372	378	388	392	А

- Transverse flattop
- Temporal Gaussian, FWHM = 8 ps

Initial beam 5 nC

- Transverse Gaussian truncated, $\sigma_x = 1 \text{mm}$
- Temporal Gaussian, FWHM = 8 ps

Emittance optimization

- For 10 pC to 1 nC, optimized solenoid current and BSA size for best emittance at EMSY1
- For 5 nC, gun phase was also optimized for better emittance at EMSY1

Emittance optimization

- For 10 pC to 1 nC, optimized solenoid current and BSA size for best emittance at EMSY1
- For 5 nC, gun phase was also optimized for better emittance at EMSY1

5 nC

Energy spread minimization

1 nC

Energy spread at dogleg entrance Vs booster phase w.r.t. MMMG phase

Energy spread minimization 5 nC

Energy spread at dogleg entrance Vs booster phase w.r.t. MMMG phase

Transport and matching

Method

• The last four quadrupoles in the PITZ tunnel are used to produce the matched Twiss parameter, i.e., β_x , β_y , α_x , α_y , at the dogleg entrance

Transport and matching

Forward tracking: Astra beam at EMSY1

Backward tracking: Astra beam at dogleg entrance rescaled to matching condition

Transport and matching 5 nC

Forward tracking: Astra beam at EMSY1

Backward tracking: Astra beam at dogleg entrance rescaled to matching condition

Assuming 20 mrad scattering angle

Summary

- Start-to-end simulations have been performed for the charge range from 10 pC to 5 nC, providing very flexible beam parameters (RMS sub-mm to several mm) at the samples
 - For focused beam, 2 cm long drift in the air leads to similar Gaussian transverse profiles
 - For enlarged beam, longer drift will help improve the transverse profile

Next: bunch length manipulation using the dogleg, CSR effects to be studied

Transport and matching

Design of the dogleg

- Assuming zero alpha functions ($\alpha_x = \alpha_y = 0$) and tracking with nonzero beta functions from the midpoint, we get the Twiss parameters at the dogleg exit; because of the symmetry, we then get the Twiss parameters at the dogleg entrance by $\beta_{\rm ent} = \beta_{\rm exit}$, $\alpha_{\rm ent} = -\alpha_{\rm exit}$
- Scanning the beta functions at the midpoint $(\beta_{x,\text{mid}} \text{ and } \beta_{y,\text{mid}})$ will give us a set of transverse phase spaces at the entrance

RMS size and emittance: start-to-end

1101 111 111 RMS size (mm) 10 15 20 s (m) 1101 118 181 Norm. emit. (µm) 10 15 20 30 s (m)

RMS size and emittance: start-to-end

