Teaching: single shot thermal emittance measurement

H. Qian, 2.06.2022

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

- Introduction to the technique
- Proof of principle experiment
- Application to cathode study
- Summary

Thermal emittance

Definition and traditional measurements

- Electron source already carries emittance from their emission mechanism
 - $\mathcal{E}_{thermal} = \sigma_{beam} * \frac{\sigma_{px}}{m_0 c} \ltimes$

Transverse rms beam size at cathode

RMS Transverse momentum spread at cathode

• Traditional measurement: laser rms size scan

 $\frac{\sigma_{px}}{m_0 c} = \frac{\varepsilon_{thermal}}{\sigma_{beam}} \quad (\text{mm.mrad/mm})$

LCLS/SwissFEL use core slice emittance (<20 pC) PITZ uses solenoid scan (<0.1 pC)

Difficulties:

- 1) More measurements, >3 laser diameters
- 2) Assumption: beam size equals laser size, needs good QE uniformity

Single shot cathode transverse momentum measurement

Basic idea

- Imaging transverse momentum to position
 - Linear dynamics at low charge
 - $x_2 = R_{11}x_1 + R_{12}x_1'$
 - When R11=0, $\sigma_{scr} = M_{12} \frac{\sigma_{px}}{m_0 c}$ (Momentum imaging)
 - Advantage vs traditional method
 - Single shot, does not involve laser size variation, reduces time
- How to find the solenoid setting & M12 in simulation?
 - Set up gun (gradient & phase) and screen in ASTRA
 - Single particle tracking in ASTRA
 - Offset the particle on cathode (e.g. by laser radius or rms size)
 - Scan solenoid vs beam position (on measurement screen)
 - Solenoid setting → beam offset on screen back to zero
 - Fix solenoid to that value, full beam tracking w/o space charge, record rms beam size
 - M12 equals beam size (mm) divided by assumed thermal emittance (mm.mrad/mm) in ASTRA

Single shot cathode transverse momentum measurement

Other effects

- Space charge effect @momentum imaging
 - Scan bunch charge (simulation, or experiment)
 - Take that beam size when variation becomes negligible
- How to reduce space charge effect
 - Longer laser pulse length (PITZ, 3 ps rms)
 - Larger BSA (0.5-1.5 mm)
 - Reference charge <0.1 pC (for 5.8 MeV/c)

- Dark current effect
 - Reduces SNR of low charge beam size measurements
 - Limits gun gradient for thermal emittance measurement
 - Beam collimator at low.scr2 helps.
 - Good news: gun5.1 has low dark current
- Gun phase (pitz operation phase, not astra phase)
 - MMMG-9: the only phase for thermal emittance mapping
 - Don't go beyond MMMG-10: energy spread effect will contribute to beam size increase
- SNR
 - Use LYSO or GAGG screen
 - Use camera imaging very close to view port to increase photon collection efficiency
 - Reduce dark current by collimator or lower gradient
 - Use at least 30 pulses, match camera exposure time to pulse number

Single shot cathode transverse momentum measurement

Other effects

- RF emittance and solenoid quadrupole error effects
 - No quads error, ~3 ps laser
 - Reliable until 0.2 mm.mrad/mm
 - Enough for most cathodes at PITZ
 - reduce laser pulse length can help measure even lower thermal emittance
 - MMMG-9 can also minize RF emittance contribution
 - With solenoid quads error field
 - Difficult to find round beam
 - Difficult to find imaging solenoid current
 - Contributes beam size errors
 - Use gun quads to compensate
 - Screen station
 - Use to be EMSY1/LYSO
 - Wish: move it to High1.scr2 (install LYSO or YAP screen), put EMSY1 back to standard setup
 - Compatible with e window test?

Page 6

DESY. PITZ

Proof of principle experiment at PITZ

Step by step

- Experiment settings
 - Gun: 5.8 MeV/c
 - Laser: 6-7 ps FWHM, 1 mm diameter
 - Screen: ~5 meter from cathode

• Tune $R_{11} = \frac{dX_{scr}}{dX_{laser}} = 0$

- Laser BBA
- Beam position vs solenoid
- Move the laser on cathode (~0.5 mm)
- Beam position vs solenoid
- Calculate beam movement on screen
- Find Solenoid current for R11=0
- Beam size vs laser size at R11=0
 - Laser diameter 0.5/1.0/1.5 mm
 - Beam size does not change on screen

DESY. PITZ

Procedure for measuring thermal emittance

For gun4

- Laser BBA (record laser beam position on VC2, print to logbook)
- Laser BSA1mm, ~3 ps rms, 10-30 pulses, try to have a good profile on VC2
- Gun 5.8 MeV/c, set RF reflection to ~3% reflection
- LEDA scan, set gun phase to MMMG (emission field ~35 MV/m for gun4)
 - Use low charge <5 pC
 - if you want to measure thermal emittance off the cathode center, set phase to MMMG-9 degree
- Find beam on high1.scr1, LYSO screen (use 'LV gradient' color mode in VC)
 - If later high1.scr2 is later used for thermal emittance measurement, set it to high1.scr2
 - Camera has to be very close to view port for high signal

Beam with LV color mode

Procedure for measuring thermal emittance

For gun4

- Setup up bunch charge to <0.1 pC
 - Low.FC1 can't measure 0.1 pC directly
 - Tune down the pump current to have smaller charge. (~20 A)
 - Measure charge Q (by FC1) vs sum of pixel intensity (by high1.scr1 LYSO), start from 2 pC beam
 - Scale from sum of pixel intensity to find 0.1 pC, 0.05 pC
 - 10 pulses, ~3 points from 2 pC to 1 pC (Q vs sum of pixel)
 - Scale it to 0.1 pC and 0.05 pC
 - Set up ~0.1 pC, 30 pulses for later measurements

Laser pump current reduce from nominal value (>26 A) to ~20 A;

After the experiment, restore the nominal value for high charge Beam with loperation. color mode

EMSY1 lyso

Background subtracted

Sum of pixel intensity (10 pulses) vs charge (pC)

Procedure for measuring thermal emittance

For gun4

- Use gun quad optimizer to optimize beam symmetry on measurement screen
 - Set up solenoid to 288A (for MMMG)
 - Solenoid depends gun phase, screen location, and gun model (gun4/5)
 - Right table can be a reference, use it as a starting point
- Solenoid scan to find R11=0 (charge can be ~0.1 pC)

Emission w.r.t. Ρz MMMG (MeV/c) (MV/m) sol (A) M12 (m) 37 5.39 4.6 0.507 222 31 5.45 10.1 232 0.470 20 5.62 19.8 256 0.390 5.77 29.5 278 8 0.320 0 5.80 35.3 288 0.277 -9 5.75 41.0 289 0.251

承 Settings	—		×
number of background images			
20			
number of beam images			
20			
What filename to use			
SolScan_2205301759			
Solenoid scan min current			
280			
Solenoid scan max current			
290			
Solenoid scan step size			
2			
Phase			
MMMG			
	C	ж	Cancel

- Script:\\win.desy.de\group\zn\4groups\zn_pitz\NFS\Measure\scripts\Development\Therm al_emittance\solenoid_scan_noVC2.m
- Scan solenoid around the starting point solenoid current (+/-5 A or bigger)
 - The scan range can be bigger with 2 A step size for the 1st round
 - Then use 1 A step size for 2nd round with a smaller range when the solenoid values is found
 - Use M5/6 to move Laser by 0.5 mm (open in another matlab window)
 - Choose solenoid with minimum beam offset (<100 um)

Solenoid scan output

Script:\\win.desy.de\group\zn\4groups\zn_pitz\NFS\Measure\scripts\Developmen t\Thermal_emittance\solenoid_scan_results.m can reload the old data

Scan data saved to transverse emittance folder: e.g. folder name ...\02A_thermal

Take thermal moementum imaging at R11=0 solenoid current

\\win.desy.de\group\zn\4groups\zn_pitz\NFS\Measure\scripts\Development\Thermal_emittance\save_images.m

- Typically use 0.1 pC, 30 pulses, lyso screen with camera close to view port
 - If signal not enough (sum of pixel >300000), use more pulses
- Script will take images and provide beam size in the output of matlab
- XY_rms (mm)/M12(m) equals thermal emittance (mm.mrad/mm)
 - E.g. XY_rms=0.298 mm
 - M12=0.28 m
 - \rightarrow 1.07 mm.mrad/mm
- Save data to the same folder for solenoid scan
- Script to reload the data
 - <u>\\win.desy.de\group\zn\4groups\zn_pitz\NFS\Measure\script</u> s\Development\Thermal_emittance\save_images_results.m

Confirm thermal momentum imaging

- Space charge effect
 - Reduce charge to 0.05 pC, use more pulses to get the similar intensity
 - Measure the beam size again by script save_images.m
 - Beams size should be similar, otherwise space charge effect is still not negligible
 - For 5.8 MeV/c, MMMG, ~0.1 pC or lower is enough
 - For lower emission field, check it vs bunch charge
- BSA effect
 - Change BSA from 1 mm to 1.5 mm
 - Keep the same bunch charge with negligible effect
 - Keep the similar sum of pixel intensity by adjusting number of laser pulses
 - Measure the beam size again
 - If the solenoid is close to thermal momentum imaging, the beam size is not dependent on laser size