Experimental Slice Emittance Reduction at PITZ using Laser Pulse Shaping

Raffael Niemczyk IPAC 2022 - Rehearsal talk 02.06.2022 Bangkok, 16.06.2022

DESY.

HELMHOLTZ

Free-Electron Laser Performance

Ultraviolet and X-Ray Regime, Springer (2014)

Photoinjector Test Facility at DESY in Zeuthen (PITZ)

- Test stand for photo electron guns of FLASH & European XFEL
- Beam energy ≤ 25 MeV
- High brightness
- Main bunch charges 1 pC 4 nC
- Various diagnostics
 - Emittance
 - RF deflector (TDS)
 - Longitudinal phase space
- Flexible laser pulse shapes

Emittance Optimisation in Photoinjectors

Emittance optimization using Laser Pulse Shaping

Transversely Deflecting Structure (TDS)

Mapping longitudinal to vertical coordinate

- Bunch profile
- Longitudinal phase space
- Time-resolved transverse phase space
 - Slice emittance

Properties

- European XFEL prototype
- 3 GHz (S band)
- Pulse length \leq 3 µs
 - Deflection of up to 3 bunches
- Deflection voltage 1.7 MV
- Resolution \geq 200 fs (typically)

[1] D. Malyutin, Ph.D. thesis, Universität Hamburg, (2014)

Projected emittance diagnostics

- Cut-out emittance-dominated beamlets from space charge-dominated beam with slit^[1]
 - Mapping divergence to beam size: $x_1' \rightarrow x_2$
 - Measure position, divergence, & intensity
- Reconstruct phase space
 - Emittance calculation via $\epsilon = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle \langle xx' \rangle^2}$

[1] M. Krasilnikov et al., PR STAB 15, 100701 (2012)

Slice emittance diagnostics

- Cut-out emittance-dominated beamlets from space charge-dominated beam with slit^[1]
 - Mapping divergence to beam size: $x_1' \rightarrow x_2$
 - Measure position, divergence, & intensity and time
- Reconstruct phase space
 - Emittance calculation via $\epsilon = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle \langle xx' \rangle^2}$

[1] M. Krasilnikov et al., PR STAB 15, 100701 (2012)

Challenges

Obstacles

- Systematic error from *space charge effects*
- Low signal-to-noise ratio (SNR) due
 - Slit mask (reduces charge)
 - TDS deflection, 3 bunches max.
 - Long distance: Slit mask → Screen

Measures

- Use of high-sensitivity LYSO screen
- Screen station: Moved camera close to screen
- Use of quadrupole magnets behind slit mask
 - Reduce horizontal beam size
 - Increase SNR
 - Improve temporal resolution

Systematic error estimation

Systematic error simulation studies

Generate standard beam

- Use PITZ standard conditions
- Optimise solenoid focusing strength
- Optimise transverse beam size @ cathode
 - Goal: Lowest projected emittance

Estimation of systematic error

Slice emittance curve with finite SNR

- SNR > 200, slice emittance overestimation
- SNR ~ 50, correct measurement
- SNR < 50, slice emittance underestimation

At PITZ

SNR ~ 50
→ Only minor error

Estimation of systematic error

DESY. | Experimental Slice Emittance Reduction at PITZ using Laser Pulse Shaping | Raffael Niemczyk | IPAC 2022 | Bangkok, June 16th, 2022

Beam characterisation

Laser pulse profile	
Temporal	Transverse
Gaussian	Flattop

Beam characterisation

Temporal Gaussian Transverse flattop

Low-emittance beam at EuXFEL conditions

- Transverse flattop laser pulse profile
- Temporal Gaussian laser pulse shape
- 250 pC bunch charge
- Laser pulse length 6 ps (FWHM)

Solenoid scan for emittance optimisation

- Operation at optimum
- Proj. hor. emittance $\epsilon_{\chi} = 0.53^{+0.09}_{-0.08}$ (syst.) µm

Temporal Gaussian Transverse flattop

Emittance curve

- Higher emittance in centre
- Centre slice emittance $\epsilon_{\chi} = 0.69^{+0.05}_{-0.03}$ (stat.) µm
- Emittance reduces towards both tails
- Simulation curve agrees with measurement in centre

Mismatch

- Small mismatch in centre of bunch
- Large mismatch at both tails
- Simulation: Mismatch similar, but rises closer to centre

Emittance decomposition

• Improper beam trajectory, leading to misalignment

Enables deeper insight into beam quality optimisation

[1] C. Mitchell, A General Slice Moment Decomposition of RMS Beam Emittance, (2015).

Temporal Gaussian Transverse flattop

Slice phase space ellipses & centroids

- Varying emittance & orientation visible
- (Mostly) linear misalignment visible as well

Emittance decomposition

- Slice emittance main contribution to projected emittance
- Moderate mismatch contribution
- Misalignment negligible

±FWHM/2	Measurement	Simulation
Projected emittance	0.68 µm	0.69 µm
Slice emittance	0.64 µm	0.60 µm
Mismatch emittance	0.25 µm	0.30 µm
Linear misalignment emittance	0.05 µm	0.01 µm
Non-linear misalignment emittance	< 0.01 µm	< 0.01 µm

Beam characterisation

Laser pulse profile		
Temporal	Transverse	
Gaussian	Flattop	
Flattop	Flattop	
Gaussian	Truncated Gaussian	

Temporal flattop

Transverse flattop

- Centre slice emittance $\epsilon_x = 0.55 \pm 0.01$ (stat.) µm
- Simulation curve agrees with measurement in centre

Temporal Gaussian

Transversely-truncated Gaussian

- Centre slice emittance $\epsilon_x = 0.47^{+0.05}_{-0.03}$ (stat.) µm
- High emittance at both tails

Temporal flattop Transverse flattop

Slice phase space ellipses & centroids

- Varying tilt along z
 - Smaller/higher correlations in tails than in centre
- Shift in centroid positions
 - (Mainly) linear shift in centre

±FWHM/2	Measurement	Simulation
Projected emittance	0.57 µm	0.52 µm
Slice emittance	0.50 µm	0.49 µm
Mismatch emittance	0.23 µm	0.19 µm
Linear misalignment emittance	0.10 µm	0.01 µm
Non-linear misalignment emittance	< 0.01 µm	< 0.01 µm

Emittance decomposition

Good agreement of measurement & simulation

Temporal Gaussian Transversely-truncated Gaussian

Slice phase space ellipses & centroids

• Varying emittance & orientation visible

Emittance decomposition

• Mismatch emittance much larger in simulation

±FWHM/2	Measurement	Simulation
Projected emittance	0.47 µm	0.60 µm
Slice emittance	0.45 µm	0.45 µm
Mismatch emittance	0.13 µm	0.40 µm
Linear misalignment emittance	0.06 µm	0.01 µm
Non-linear misalignment emittance	< 0.01 µm	< 0.01 µm

Summary & outlook

Summary

Slit scan + TDS allows slice emittance measurement

- Systematic error acceptable
- Temporal resolution improved with focusing to 200 fs

Signal-to-noise ratio increased

- LYSO screens, optimised screen station, quadrupole focusing, wider slit opening
- Improved time resolution allows reduction of TDS voltage

Several beams characterised

- Emittance reduced by going from temporal Gaussian to flattop
- Transversely-truncated Gaussian reduces emittance further

Emittance decomposition

Gives insight, how projected emittance can be reduced

Outlook.

New laser system for PITZ (NEPAL-P) in 2023

- Higher repetition rate (1 MHz \rightarrow 4.5 MHz)
- Increase of SNR by factor ~4

Upgrade camera

- Electron-Multiplying CCD camera (EMCCD)
- Lower noise improves SNR further

R'n'D program towards CW-operation of European XFEL

- Reduced gun gradient
- PITZ can characterize beams at cw-gun conditions
- Slice emittance optimisation by laser pulse shaping

Thank you

PITZ Photo here

Contact

Deutsches Elektronen-	Raffael Niemczyk
Synchrotron DESY	PITZ Group
	raffael.niemczyk@desy.de
www.desy.de	+49 33762/7-7280

Backup slides

Estimation of systematic error from finite SNR

Add time profile, detailed PITZ informations

Laser systems (photos + key properties)

Add time profile, detailed PITZ informations

Estimation of systematic error

Start-to-end simulation in ASTRA^[1]

Beam parameters and results			
Bunch charge 250 pC			
Laser pulse length 6 ps (FW	/HM)		
Solenoid current 366 A			
Gun momentum 6.32 Me	V/c		
Beam momentum 19.29 Me	eV/c		
Beam size at EMSY1 0.37 mm	I		
Projected emittance 0.61 µm			

Beam characterisation

Temporal flattop Transverse flattop

Low-emittance beam at Eu-XFEL conditions

- Transverse flattop laser pulse profile •
- Temporal flattop laser pulse shape •
- 250 pC bunch charge •

 (\mathbf{A})

Beam characterisation

Temporal Gaussian Transversely-truncated Gaussian

Low-emittance beam at Eu-XFEL conditions

- Transversely-truncated Gaussian laser pulse profile
- Temporal Gaussian laser pulse shape
- 250 pC bunch charge

Emittance reduction in injector

Reduce emittance

- Low thermal emittance (from cathode)
 - Low transverse momentum spread
 - Small laser spot size
- Low space charge emittance
 - Reduce SC non-linearities
 - Laser pulse shaping
 - Lower bunch charge
- Gun design
 - High cathode field with gun design (field balance)
 - Pulsed gun
 - High frequency
- Emittance compensation
 - Solenoid focusing into booster entrance
 - Slice PS overlap
- RF stability
 - Emittance measurements are multi-shot

Info's for me:

General info's for me

Subheading, optional

01 Talk length

- 20 min presentation
- 5 min questions

02 Frank Stephan

• Not only my thesis, but message from PITZ facility

03 Check abstract

• What did I tell I would cover?

04 Check abstract

• Font size: 14

General info's for me

Subheading, optional

Speaker: Raffael Niemczyk

Paper ID

- Author(s) Raffael Niemczyk, Zakaria Aboulbanine, Gowri Dulanjalee Adhikari, Namra Aftab, Prach Boonpornprasert, Georgi Zhivkov Georgiev, James David Good, Matthias Gross, Christian Koschitzki, Xiangkun Li, Osip Lishilin, David Melkumyan, Sandeep Kumar Mohanty, Anne Oppelt, Houjun Qian, Seyd Hamed Shaker, Guan Shu, Frank Stephan, Tobias Weilbach (DESY Zeuthen, Zeuthen), Maria Elena Castro Carballo, Mikhail Krasilnikov, Grygorii Vashchenko (DESY, Hamburg), Wolfgang Carl Albert Hillert (University of Hamburg, Hamburg)
 - **Abstract** Free-electron lasers in the X-ray regime require a high-brightness electron beam, i.e. an electron beam with high current and low transverse emittance. At the Photo Injector Test facility at DESY in Zeuthen (PITZ) high-brightness electron sources are optimized for the use at FLASH and European XFEL. A low transverse emittance of the electron beam's central part, which is assumed to be the lasing slices, is of particular interest for the efficient FEL operation. Over the past years a slice emittance measurement scheme has been developed at PITZ which employs an rf deflector and additional quadrupole magnets along the beamline to the standard measurement procedure for the projected emittance (single-slit scan). It allows measuring the slice emittance in a high-brightness (Gaussian and flat-top) have been used to emit electrons, as well as transversely-truncated Gaussian laser pulses with temporal Gaussian shape. The paper shows that the lowest slice emittance in the injector is reached with a temporal flattop shape, or when using a transversely-truncated Gaussian shape.

Word Count: 175 Character Count: 1164

Abstract key points

- Paper shows that lowest emittance is achieved when using flattop or transversely-truncated Gaussian profile
- How to progress: Check content first, then polish slides (fontsize etc.)