Bunch length measurements

Bunch length and bunch profile measurements using Chronos.m

Raffael Niemczyk PITZ Physics Seminar Online, 28.04.2022

HELMHOLTZ

Transversely deflecting structure (TDS)

- Mapping longitudinal to vertical coordinate $(z \rightarrow y)$
 - Bunch profile
 - Longitudinal phase space
 - Time-resolved transverse phase space (slice emittance)

- Eu-XFEL prototype
- 3 GHz (S band)
- Pulse length $\leq 3 \ \mu s$
- Deflection voltage 1.7 MV
- Resolution \geq 200 fs (typically)

[1] D. Malyutin, Ph.D. thesis, Universität Hamburg, (2014)

TDS calibration

- Of interest: zero-crossing phases, shear parameter, temporal resolution
- Shear parameter is mapping parameter: $y = S \cdot z$

- Different rf phases \rightarrow different net streak
- Change of mean position vs. change of TDS phase
- Slope gives streak parameter

- Done at **both** zero-crossing phases
 - Sometimes different streak parameter at each slope

Measurement procedure

- Klystron & TDS cavity preparations
- Beam requirements
- Software operation & dialogues
- New software for bunch length measurements: Chronos.m
 - Personification of time in ancient Greece
- Overall: Software follows closely previous software

Chronos and His Child by Giovanni Francesco Romanelli

TDS GUI

- Use manual in confluence/control room for RF5
 ramp up/down
- Other than gun & booster:
 - Feedforward can be turned on & off rapidly
 - Feedbacks masked

Bunch profile measurement

- Keep TDS off at the beginning
- Use quadrupole magnets to focus beam vertically (small y_{rms}) on screen (usually PST.Scr1)
- Usually use High1.Q09 & Q10
 - Currents ~ +/- 4.0 Amps
- Steer beam to vertical centre of beam
- Use 1 bunch & 0 gain to reduce/avoid saturation

Bunch profile measurement

- TDS power for strong streak (keep margin for phase scan)
- Centre position ~ same as unstreaked beam
 - Almost zero-crossing phase
- High signal, no saturation
 - Up to three bunches
- Adjust power for phase range
 - Range: Zero crossing +/- 3 deg
 - Stepsize: 1 2 deg

Margin for phase scan

New software implementation

- New software for bunch length measurement: Chronos.m
 - Previous version hard to maintain & introduce new features
 - Data loading was awkward
- Code slim, easy to read
- Raw data saved dapperly
 - Automatically
 - Same folder structure & naming as before

New software features

- Scan range +/-180 deg
- Non-integer phase step
- Take bunch profiles at zero-crossing phases

Chronos.m **Operator** input Take unsheared beam images TDS phase scans (both slopes) Take sheared image (zero-crossing phases) Plot current profiles Save data

Software dialogues

Frame grabber selection

Results: Output & plots

- Results of phase scan
 - Zero-crossing phases
 - Shear parameter
- Values printed to MATLAB console

```
zero-crossing phases = 139.0 deg and -40.6 deg
shear parameter = -2.13 and 1.99
Finished TDS calibration!
```

- Current profile
 - Both zero-crossing phases
 - Uncertainty as gray 'tube'
- Summary printed to e-logbook
- Data saved automatically without further inputs

Thank you

Contact

Deutsches Elektronen-	Raffael Niemczyk
Synchrotron DESY	PITZ Group
	raffael.niemczyk@desy.de
www.desy.de	+49 33762/7-7280