Beam preparation for XFI

Xiangkun Li, Zakaria Aboulbanine PPS, 3/3/2022

Outline

- Simulation setup
- Particle tracking
- Monte-Carlo simulation
- Conclusion

Setup for beam simulation

Requirement for XFI: FWHM < 1 mm Bunch charge TBD

- Two bunch charges (100 pC and 1 nC) were considered
 - Beam energy is 22 MeV (or 22.5 MeV/c)
 - Particle tracking (Astra, Elegant and Ocelot) from photocathode to exit window (X.-K. Li)
 - <u>Monte-Carlo simulation</u> in exit window and air with and w/o imaging solenoid (Z. Aboulbanine)

• The exit window is right after the first dipole of the dogleg

• The exit window is after the sweeper following the dogleg and quadrupoles

Solenoid field

DESY. Beam preparation for XFI

Particle tracking

- Laser: 8 ps FWHM; uniform transversely with spot size optimized for small emittance at EMSY1
- Gun: 60 MV/m, MMMG phase
- Booster phase optimized to minimize the energy spread at the dogleg
- Four quadrupoles after the booster to focus the divergent beam
- Four quadrupoles before the wall to match the beam into the dogleg

Particle tracking

- Laser: 8 ps FWHM; uniform transversely with spot size optimized for small emittance at EMSY1
- Gun: 60 MV/m, MMMG phase
- Booster phase optimized to minimize the energy spread at the dogleg
- Four quadrupoles after the booster to focus the divergent beam
- Four quadrupoles before the wall to match the beam into the dogleg

MC simulation at 100 pC

Beam transport in air only Setup I After the window

y (mm)

- Exit window starts from 0 mm
- Secondaries removed
- Beam cut at R=2FWHM
- FWHM@51mm ~ 2.3 mm
- FWHM<1 mm for z<21 mm

The beam is flat due to dispersion in the dipole

DESY. Beam preparation for XFI

Data analysis for RMS calculation

W/O secondaries

W/ secondaries

Scattering effect in air

Beam transport in air with solenoid Setup I

- Exit window starts from 0 mm
- Secondaries removed
- Beam cut at R=2FWHM
- FWHM@51mm ~ 0.26/0.40 mm
- The beam profile at the imaging point has imprints from the beam after the window, e.g., ellipsoidal core and tails on the sides

Beam transport in air only Setup II After the window

- Exit window starts from 0 mm
- Secondaries removed
- Beam cut at R=2FWHM
- FWHM@51mm ~ 2.3 mm
- FWHM<1 mm for z<21 mm

Beam transport in air with solenoid Setup II After the window

- Exit window starts from 0 mm
- Secondaries removed
- Beam cut at R=2FWHM
- FWHM@51mm ~ 0.23/0.25 mm

MC simulation at 1 nC

Beam transport in air only Setup I After the window

(mm)

- Exit window starts from 0 mm
- Secondaries removed
- Beam cut at R=2FWHM
- FWHM@51mm ~ 2.6/2.3 mm
- FWHM<1 mm for z<~20 mm

Before the window

The beam is flat due to dispersion in the dipole

DESY. Beam preparation for XFI

Beam transport in air with solenoid Setup I

- Exit window starts from 0 mm
- Secondaries removed
- Beam cut at R=2FWHM
- FWHM@51mm ~ 0.26/0.62 mm
- Here, the imaging leads to a rotated beam with a clear tail

Beam transport in air only Setup II After the window

(mm)

- Exit window starts from 0 mm
- Secondaries removed
- Beam cut at R=2FWHM
- FWHM@51mm ~ 2.3 mm
- FWHM<1 mm for z<21 mm

Beam transport in air with solenoid Setup II After the window

- Exit window starts from 0 mm
- Secondaries removed
- Beam cut at R=2FWHM
- FWHM@51mm ~ 0.44/0.40 mm

Discussion

• Beam before the exit window is very different from each other

Discussion

100

1 nC, setup I

Discussion

• Summary of FWHM beam size

	100 pC, setup I	100 pC, setup II	1 nC, setup I	1 nC, setup II	unit
2 cm w/o sol.	0.99/0.97	0.96/0.94	1.24/0.98	1.00/1.00	mm
5 cm w/o sol.	2.35/2.32	2.32/2.33	2.57/2.32	2.34/2.31	mm
5 cm w/ sol.	0.26/0.40	0.23/0.25	0.26/0.62	0.44/0.40	mm

Conclusion

- The start-to-end simulations with PITZ photoinjector and two planned experimental setups for XFI have been performed for the bunch charges of 100 pC and 1 nC
 - By particle tracking, the electron beams have been focused as much as possible at the exit windows;
 - By Monte-Carlo simulations, the electron scattering in the exit window and air have been studied with and without an imaging solenoid
- The beam transverse profile after the window strongly depends on the scattering angles (RMS ~ 20 mrad)
 - By putting the samples closer to the window (~2 cm), the required the beam size (FWHM<1mm) could be reached;
 - The transverse distribution of such a beam is almost Gaussian
- With the imaging solenoid, the beam can be focused well at the imaging point, but
 - The imaging is affected by the air scattering;
 - Even though the imaging is perfect, the distribution of the beam to be imaged is far from Gaussian

DESY. Beam preparation for XFI

Start-to-end simulation 100 pC, setup II

• Software: Astra, Elegant and Ocelot

DESY. Beam preparation for XFI

Start-to-end simulation 1 nC, setup II

• Software: Astra, Elegant and Ocelot

DESY. Beam preparation for XFI

Minimization of beam size after dipole 1 nC, setup I

• The last two quads before the dipoles were optimized for minimal beam size in both horizontal and vertical planes

Ocelot vs SCO vs Astra

SCO doesn't work well when the beam is flat, since its SC model is 2D

Exit window Sebastian Philipp

Example of imaging Hard edge model by Elegant and no air scattering

22 MeV beam with 20 mrad RMS angle; White area is cut by purpose

