Planned detector tests for FLASH dosimetry at PITZ

PITZ Physics Seminar 24.02.2022

Felix Riemer Ph.D. student (Detector development)

Motivation

About FLASH radiation therapy

- New method for cancer treatment
- Treatment with short and high intensity pulses
- High dose rates (> 40 Gy/s): Better tissue sparing than conventional radiation therapy (few Gy/min)

About PITZ for FLASH

- PITZ has unique beam parameters
- Parameters are extremely flexible (bunch charge, bunches per train etc.)
- Dosimetry is challenging

 AND equal eradication of tumors 	Two examples:		bunch: ~9 Gy/cm³
free space for eELASH BT B&D area:	Options @PITZ:	low dose case	high do case
$> 6 \times 2 \times 3 \text{ m}^3 (\times \text{w} \times \text{h})$	Bunch charge [pC]	0.1	5 000 ⁷
<7 MeV/c <22 MeV/c lots of beam diagnostics and beam manipulation	Single bunch OR train	single bunch	1ms train (1MHz)
	RF pulse rep. rate	1Hz	10Hz
	Bunch length [ps]	<1	~30
e' source Svmbols: Dark current monitor dividow Wire scanner Tunnel 1 Tunnel 2	Dose Dose rate <u>per</u> <u>bunch</u> [Gy Gy/s]	<mark>0.02</mark> >2E+10	1000 4E+13
00 Faraday cup/ beam dump ■ Integrated current ■ Safety transformer ■ Safety magnet ■ Beam stop Beam stop Beam stop Beam stop	Dose Dose rate <u>per</u> <u>train(ms)</u> [Gy Gy/s]	0.02 20	1E+6 1E+9
	Dose per second [Gy/s]	0.02	1E+7

Single

Challenges of FLASH dosimetry: 3 critical parameters

- Temporal resolution: very fast time resolution (at least bunch-train level) and readout is needed
- Spatial resolution: imaging of dose distribution is needed (at least mm resolution)
- Dose rate linearity: dose rate linearity for very high dose rates is needed for PITZ

There is no perfect dosimeter for FLASH available now.

Dosimeter overview (some examples)

- **Ionization chambers:** limited by ion recombination rate, work up to 300 Gy/s
- Radiochromic films: passive measurement to high dose rates of 10⁹ Gy/s (6 MeV) and easy readout
- **TLDs and OSLDs:** passive measurement up to 10⁹ Gy/s, but readout complicated (external company)
- Alanine: often used as reference in current FLASH experiments, tested to very high dose rates of 10⁹ Gy/s but readout is complicated (external company)
- No dosimeter is optimal for FLASH dosimetry at PITZ
- **To-Do**: Improve existing devices or find new technologies

Ionization chambers

- Currently standard device for clinical dosimetry, but show their limits at FLASH dosimetry
- Commercially available and tested
- Problem: Ion recombination rate is dose depended at high dose rates (> 300 Gy/s)
- Some attempts for correction factors were made

Plans for PITZ:

- Buy two different chambers
- Use them as reference at low dose rates, calibration of other devices
- Possible project: Build our own very thin ionization chamber

Radiochromic films

- Standard passive dosimeter
- Sandwich layers: Active chemical layer between polyester
- Works comparable to an old camera film
- Readout only after 24h possible
- Limited lifetime (1,5 years)

Plans for PITZ:

- Buy some films and get familiar with the readout
- Can be combined with any other dosimeters (simply tape them on a surface)

GAFCHRO

Silicon pixel sensors

Stolen from high energy physics experiments

Hybrid Pixels

- Charge collected by drift
- Large signal, radiation hard and fast
- Standard technology for the field

Monolithic Active Pixels (MAPs)

- Charge collection by diffusion
- Small signal, moderate radiation hard
- Slower than Hybrid Pixels
- New technology in the field

Hybrid sensor: Timepix 3 & 4

Timepix 3:

- Particle tracking/counting detector chip
- Company Advacam will visit us and do experiments with their custom designed Timepix 3

Timepix 4:

• There might be a chance to get one (DESY is an active collaborator of the Timepix 4 development)

Timepix 3 (naked chip)

		Timepix3 (2013)	Timepix4 (2019/20)	
Technology		IBM 130 nm – 8 metal	TSMC 65 nm - 10 metal	
Pixel size		55 x 55 µm	55 x 55 μm	
Pixel arrangement 3.5 x		3-side buttable 256 x 256	4-side buttable (TSV) 512 x 448	
Sensitive area		1.98 cm ²	6.94 cm ²	
Data driven (tracking)	Mode	ToT and TOA		
	Event packet	48-bit	64-bit	
	Max rate 8 x	< 43 Mhits/cm ² /s	357.6 Mhits/cm ² /s	
	Pix rate equiv.	1.3 kHz/pix average	10.8 kHz/pix average	
E Frame Based (imaging)	Mode	Count: 10 bit + iToT	Count: 8 or 16 bit CRW	
	Frame	Zero suppressed (with pix addr)	Full frame (no pix add	
	Max count rate 10 x	82 Ghits/cm ² /s	~ 800 Ghits/cm²/s	
	Max frame rate	N/A (worst case: 0.8ms readout)	80 kHz CRW	
OT energy res	solution 2 x	< 2 keV	< 1 keV	
Time resolution 8 x		1.56 ns	~ 200 ps	
Readout bandwidth 32 x		≤ 5.12 Gbps (8 x 640 Mbps)	≤163.8 Gbps (16 x 10.2 Gbps)	
Target minimum threshold		< 500 e [.]	< 500 e [.]	

Timepix 3 vs. Timepix 4

Silicon MAPs @DESY

MALTA

- Pixel sensor for particle tracking
- Very radiation hard
- Adjustable thresholds
- Active development at DESY Zeuthen

DECAL

- Reconfigurable strip or pad
- Used for calorimetry
- Active development at HU Berlin

