Laser Pulse Shaping for Electron Infectors

Matthias Gross for the l

Matthias Gross Snowmass Electron Sources Workshop, 18th February 2022

Agenda

Introduction

Laser pulse shaping at PITZ

- 3D: Ellipsoidal pulses
- 3D: Other shapes
- Transverse: Truncated Gaussian

PITZ strategy

Summary

Photo Injector Test facility at DESY, Zeuthen site (PITZ)

Development, test and optimization of high brightness electron sources for SC linac driven FELs + applications:

- Test-bed for FEL injectors, e.g. FLASH and European XFEL (gun cavities and photo injector subsystems → e.g. lasers)
- High brightness \rightarrow small ε_{tr} (projected and slice), lots of beam diagnostics
- Further studies → e.g. cathodes: dark current, photoemission, QE, thermal emittance, ...
 → applications like plasma acceleration, THz, radiation biology, ...

Radiation

Introduction: Why Laser Pulse Shaping?

Main application for PITZ photoinjector studies: x-ray FEL (FLASH, EuXFEL)

• Important for x-ray FELs:

Ideal Solution: Ellipsoidal Pulse Shape

Uniformly filled ellipsoid: I.M. Kapchinskii and V.V. Vladimirskii, in *Proceedings of the International Conference on High Energy Accelerators, CERN, Geneva* (Scientific Information Service CERN, Geneva, 1959), p. 274

Generating Ellipsoidal Pulses at PITZ

Beam dynamics simulations and collaboration with Khazanov group at RAS IAP since 2010

- Two methods to generate 3D ellipsoidal photo cathode laser pulses are under study:
 - Mironov et al., Appl. Opt. 55, p. 1630 (2016)
 - Mironov et al., *Laser Phys. Lett.* 13, p. 055003 (2016)

DESY. | Laser Pulse Shaping for Electron Injectors | Matthias Gross, 18th February 2022

Latest Experimental Results at PITZ

- IR Shaping
 - 3 SLM Shapers allow for shaping of all 3 projections
 - Direct feedback loops with IR-Spectrograph allow high quality shaping

Transverse Shaping through

exaggerates small non-uniformitiesPossibly insufficient optical resolution

• 4th harmonic nonlinear conversion heavily

Spatial Filtering

- With spatial filtering non-uniformities are removed
- Temporal/spectral shaping still possible. Some emittance reduction possible in this mode.

DESY. | Laser Pulse Shaping for Electron Injectors | Matthias Gross, 18th February 2022

Next steps

- Biggest problem: conversion from IR to UV (2x SHG)
- New approach: do SLM shaping in the green wavelength region
 - Only one SHG conversion step \rightarrow improved pulse homogeneity

Other SLM Pulse Shaping Possibilities

Utilizing the flexibility of SLM shaping

Longitudinal flat top

- Emittance reduction for photoinjectors
 - Pulse length can be extended to 20 ps or more – restricted in this experiment by seed laser pulse length

See e.g.: M. Krasilnikov et al., *PRST-AB* **15**, 100701 (2012)

Cone

- Application: high transformer ratio plasma wakefield acceleration
 - Idea: keep charge density constant for varying beam diameter

See e.g.: G. Loisch et al., *PRL* **121**, 064801 (2018)

Modulated pulse

 Application: Seeding of THz SASE FEL

> From: I. Kuzmin et al., "Shaping picosecond ellipsoidal laser pulses with periodic intensity modulation for electron photoinjectors", *Applied Optics* **59**, 2776 (2020)

DESY. | Laser Pulse Shaping for Electron Injectors | Matthias Gross, 18th February 2022

Alternative: Approximation with Gaussian truncation

Much simpler setup compared to 3D shaping

- 2012, LCLS experience: (*PRST-AB* 15, 090701)
 - 150 pC, ~1.3 ps (rms) laser
 - Uniform \rightarrow 1.1- σ Gaussian truncation

- Why '1-σ' Gaussian truncation?
 - Analytical prediction (**2013**, *T. Rao and D. Dowell, An engineering guide to photo injectors*):
 - A special parabolic radial distribution can linearize transverse space charge to the 3rd order

DESY. | Laser Pulse Shaping for Electron Injectors | Matthias Gross, 18th February 2022

Experimental Results at PITZ

Thorough investigation of effect by transverse truncation

- The emittance reduction from flat-top to optimal case (1σtruncation): 15%
- Pulse energy is increased by 4.8x

From: M. Gross et al., "Characterization of low emittance electron beams generated by transverse laser beam shaping", Proc. of IPAC 2021

Next Possible Step: "Quasi 3D Shaping"

Combining spatial and temporal 1D shaping

PITZ Strategy

Laser needs

- Latest gun development: 5th generation with some new features:
 - Optimization of inner surface contours
 - \rightarrow Reduce dark current
 - RF pickup in gun body
 - \rightarrow Better RF amplitude and phase stability
 - Optimization of water cooling channels
 - → Can afford higher average power. Goal: 6.5MW peak power at 1 ms RF pulse length

Together with

- Laser that can produce long trains of shaped pulses
- Low emittance green photocathode

Further peak and average brightness improvement

Summary

- Laser pulse shaping is advantageous for seeding photoinjector of x-ray FEL
 - High intensity
 - Short pulses
 - Protect machine
- Optimal laser pulse shape: ellipsoid
- Approximation: truncated Gauss / quasi 3D shaping
 - Advantage: much simpler setup
- PITZ is running an R&D program to advance laser pulse shaping for photoinjectors

Thank you

Contact

DESY. Deutsches	Matthias Gross
Elektronen-Synchrotron	PITZ
	matthias.gross@desy.de
www.desy.de	+49 33762 77323
www.desy.de	+49 33762 77323